Conference Dates

March 8-13, 2009


The typical biorefinery platforms are sugar, thermochemical (syngas), carbon-rich chains, and biogas platform. The sugar platform uses hexose and pentose sugars extracted or converted from plant body. The thermochemical (syngas) platform is chemical or biological conversion process using pyrolysis or gasification of plant to produce biofuels. The carbon-rich chains platform is used to produce biodiesel from long-chain fatty acids or glycerides. Those platforms have unique advantages and disadvantages. Our group has concentrated on the biogas platform producing methane gas from municipal solid wastes through anaerobic digestion (AD) processs, which is composed of rapid acidogenesis and slow methanogenesis. This acidogenic and methanogenic process is widely used for biogas production form the treatment of wetted waste materials (foodwastes, sludge, and manure) in the worldwide. The volatile fatty acids (VFAs) are short-chain fatty acids composed of mainly acetate and butyrate, and easily produced from non-woody biomass with low lignin content in acidogenesis step by the natural consortia of mixed anaerobic bacteria. And then it is slowly converted to biogas (methane, CO2) by methanogenic bacteria naturally. Now, we would like to suggest a new platform using VFAs for biofuel and biochemicals production, because the VFAs can be produced form a cost-effective way using AD process that does not need sterilization, additional hydrolysis enzymes (cellulase and xylanase) and high cost pretreatment step in case of low-lignin content biomass. Considering that raw material alone constitutes 60-80% of biofuel production costs, biofuels made from the VFAs derived from the waste organic biomass can have a potential of economical advantage. A problem is how to convert VFAs to biofuels and biochemicals. In the presentation, we will give possible solutions in order to produce bioethanol, biobutanol, biodiesel, and biohydrogen as well as biogas through biological or chemical processes. And we will introduce our ongoing researches related with the VFA platform