Title

Optimized media and workflow for the expansion of human pluripotent stem cells as aggregates in suspension

Conference Dates

January 15-19, 2017

Abstract

3D suspension culture enables the efficient and cost-effective scale-up of human pluripotent stem cell (hPSCs) manufacturing. However, media optimized for 2D adherent cultures can lead to low volumetric productivity and inefficient workflow. To overcome these limitations we developed mTeSRTM3D, a defined medium based on mTeSRTM1, and novel protocols for fed-batch culture of hPSC aggregates. Human embryonic stem cell (hESC) lines (H1 or H9) or human induced pluripotent stem cell (hiPSC) lines (WLS-1C or STiPS-M001) that were previously maintained in 2D mTeSRTM1 culture were seeded into multiple suspension culture vessels containing mTeSRTM3D Seed Medium plus 10 μM Y-27632 ROCK inhibitor. 3D cultures were maintained using either daily 50% mTeSRTM1 medium exchanges (control) or using a fed-batch protocol whereby the culture medium was supplemented daily with mTeSRTM3D Feed Medium. After 3 or 4 days in suspension culture, aggregates were harvested, dissociated into small clumps with Gentle Cell Dissociation Reagent (GCDR) or single cell suspensions enzymatically, and re-seeded in mTeSRTM3D Seed Medium plus 10 μM Y-27632. Passaging and feeding cycles were repeated for at least 5 passages. 3D cultures were assessed for growth, viability, hPSC marker expression, in vitro differentiation potential, and karyotype. In addition, media was analyzed for molar glucose to lactate yield to characterize metabolism. By day 4, aggregates cultured in mTeSRTM3D typically grew to a mean diameter of 350 μm, with a 5-fold increase in cell number. Using mTeSRTM3D up to 109 cells can be produced from a single plate within 2-3 weeks representing a greater than 500-fold expansion. hPSC cultures maintained in mTeSRTM3D differentiated into all 3 germ layers with high efficiency. The average volumetric productivities were 0.7, 3.1 and 6.9 (x105) viable cells / mL in 2D, daily 50% media exchange, and mTeSRTM3D cultures, respectively. Using the GCDR clump passaging protocol, mTeSRTM3D cultured hPSCs retained normal karyotypes. Culture performance was evaluated in shaker bottles, spinner flasks and bioreactors. Performance in each culture system was comparable confirming straightforward scale-up and wide applicability. Typical growth rates were on the order of 1.5-fold expansion per day. Metabolic activity as assessed by the moles lactate produced to glucose consumed was 1.7, consistent with a primarily glycolytic metabolism. Image analysis was performed to estimate aggregate size during growth. Adaptation times for cells moving from 2D to 3D aggregate culture varied with different cell lines; typically one passage in 3D was required before consistent expansion passage over passage was obtained. Additionally, protocols were developed for use on a Hamilton® robotic platform for reproducible, matrix-free, high-throughput hPSC suspension culture at a small scale. mTeSRTM3D enables efficient scale-up and scale-down of hPSC cultures with greatly simplified workflow.

This document is currently not available here.

Share

COinS