PHOTOCHEMICAL MODULATION OF WOUND HEALING AND INHIBITION OF TISSUE DEGRADATION

Michael Hamblin, Harvard Medical School

- Wellman Center for Photomedicine, Mass General Hospital
- PDT=photodynamic therapy
 - Need a nontoxic dye
 - Light
 - Together causes an excited state that interacts with oxygen and kills cells
 - Started as a cancer therapy in 1905
 - Dye which absorbs visible light
 - Red light penetrates tissue better, so tend to use this wavelength
 - Dual selectivity for target: selective accumulation of photosensitizer (PZ dye)
 - Excited states of PS, singlet, double, triplet is longer lived can degrade as phosphorescence but is longer lasting and can interact with oxygen to cause a cytotoxic species, which can oxidize DNA, proteins, lipids
- Photosensitizers are usually natural pigments: tetrapyrroles, such as heme, chlorophyll, bacteriochlorophyll
- Why do we use PDT against microorganisms?
 - For localized infections (not systemic)
 - Photosensitizer is delivered locally to infection
 - World-wide increase in multi-antibiotic resistant bacteria
 - Systemic antibiotics cannot get into dead or damaged tissue
 - Even if antibiotics work they take several days
- Antibiotic resistance
 - 70% of bacteria that cause infections in hospitals are resistant to at least one antibiotic
 - Food producing animals
 - Given to pt more often than necessary
 - Pt c\don't complete the course
- What do we know about antimicrobial PDT?
 - Gram + specials easily killed by usual PS + light
 - Gram - species need cationic PS or special means to increase bacterial permeability
 - Choice of PS: chlorin E6 good absorption peak at 660 nM
- Bioluminescence imaging
 - Genetically engineered bacteria which emit light, “glow in the dark”
 - Can prove the efficacy of PDT treatment
• Test with Pseudomonas aeruginosa, causes systemic ds and death in 2-4 days, but PDT treatment stops the infection, and the wound infection healed better than treatment with silver nitrate
• PDT does not accelerate wound healing but contradicts later
• Silver nitrate does not accelerate or slow wounding healing
• PDT appears to destroy bacterial virulence factors that otherwise would slow wound healing
• Topical PDT with 665 nm light improves wound healing with some PS and delays wound healing with toluidine blue + 630 nm
• Low dose 630 nm light improves wound healing – not a big effect 10 J / cm2
• High dose 50J/cm2 630 nm light has no effect
• CONCLUSIONS:
 o Stimulation of wound healing is complicated
 o Light alone may have an effect
 o Ps identity
 o Ps dose
 o Ps delivery route
 o Time between PS and light
 o Wavelength
 o Fluence
 o Fluence rate
• Questions: may be better lower dose, possibly 1-2 joules
• Comment: may be given a higher dose than they think
• Some of this research has been done by Mary Dyson
• This research are excisional wounds are mice
• Wounds all heal by contraction, the amount of granulation tissue is clearly different, a lot of granulation tissue slows healing
• Why hasn’t this caught on clinically? Need a good PS, the FDA approved ones are not good for bacteria. The only clinical application is in UK, toluidine blue and then red laser to sterilize a cavity in dental work.