Upgrading of Fast Pyrolysis Byproducts for Material Use with High Value

A. Funke
Institute of Catalysis Research and Technology (IKFT)

M.M. Abbas
Institute of Catalysis Research and Technology (IKFT)

N. Dahmen
Institute of Catalysis Research and Technology (IKFT)

Follow this and additional works at: http://dc.engconfintl.org/biorefinery_I

Part of the [Chemical Engineering Commons](http://dc.engconfintl.org/biorefinery_I)

Recommended Citation

Upgrading of Fast Pyrolysis Byproducts for Material Use with High Value

A. Funke; M. M. Abbas, N. Dahmen
Outline

- Rationale of using char from fast pyrolysis
 - Example bioliq

- Activation and demineralization of fast pyrolysis char
Fast pyrolysis bio-oil

- Moderate temperature and high heating rate (wood):
 - 60-70 % liquid organics
 - <10 % char

- Char represents byproduct of low quantity

- Current use
 - Oxidation to provide process heat
 - Surplus heat & power as optional products

Adapted from:
Ash-containing feedstock

- Ash increases the yield of (organic) solids
 - Solids contain significant fraction of carbon
 - Use of char becomes more attractive

Fast pyrolysis of wheat straw – product distribution

bioliq® concept for 2nd generation biofuel

- Volumetric energy densification in decentralized units
- Economic production of drop-in fuels and chemicals in industrial scale

Energy density:
- 2 GJ/m3
- 25 GJ/m3
- 36 GJ/m3
Cascaded approach

- Revenue must only compensate carbon losses due to activation (burn off)
- Negligible effects on gasifier design
 - No water gas shift required
 - No solids, less ash

![Diagram showing the cascaded approach from fast pyrolysis bio-oil to disposal via Char/activated carbon and adsorption application.]
Activation procedures

Chemical (KOH) Activation
- **Impregnation**
 - (2:1 wt./wt. KOH:char in H$_2$O at 60 °C)
- **Activation @ 700 °C**
 - (1 h @ 700 °C, N$_2$ 50 L h$^{-1}$, 4:1 wt./wt.KOH:char)
- **Washing**
 - (1N HCl and rinsing with H$_2$O)

Steam Activation
- **Pelletizing**
 - (fast pyrolysis tar as binder)
- **Activation**
 - (1 h @ 750 °C, steam 4.5 L h$^{-1}$)

Demineralization
- (1N H$_2$SO$_4$:HCl 1:1 solution for 24 h at room temperature)

Char from 5 mm wheat straw
- (fast pyrolysis at 500 °C, auger reactor with heat carrier)
Results of different activation methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Ash content (%)</th>
<th>BET surface area (m² g⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Char</td>
<td>4</td>
<td>39.8</td>
</tr>
<tr>
<td>Demin. char</td>
<td>19.6</td>
<td>24</td>
</tr>
<tr>
<td>Steam Act.</td>
<td>550</td>
<td>38</td>
</tr>
<tr>
<td>KOH Act.</td>
<td>0.7</td>
<td>2900</td>
</tr>
</tbody>
</table>
Characterization of activated carbon

- Steam activation: mesopores
- Chemical activation: micropores
Simplifying activation method

Char from 5 mm wheat straw
(fast pyrolysis at 500 °C, auger reactor with heat carrier)

Demineralization
(1N H₂SO₄:HCl 1:1 solution for 24 h at room temperature)

Impregnation
(2:1 wt./wt. KOH:char in H₂O at 60 °C)

Activation @ 700 °C
(1 h @ 700 °C, N₂ 50 L h⁻¹, 4:1 wt./wt.KOH:char)

Washing
(1N HCl and rinsing with H₂O)

Ash content 40 %

Ash reduction to 20 %

Ash reduction to 15 %

Ash reduction to <1 %
Carbon losses due to activation are <40 %
Summary

- Fast pyrolysis char is a significant byproduct if feedstocks with high ash content are used.

- It was shown that combined activation and demineralization of fast pyrolysis char is possible.
Thank you for your attention!

And many thanks to:
Willy Habicht
Thomas Otto
Elisabeth Schröder
Patrick Wenke

Dr.-Ing. Axel Funke
Karlsruhe Institute of Technology (KIT)
Institute of Catalysis Research and Technology (IKFT)

Phone: +49 721 608-22391
Email: axel.funke@kit.edu
Web: http://www.kit.edu/