New Enzymatic Advances in the Dry Grind (Grain) Ethanol Process

David Johnston
Crop Conversion Science and Engineering Research Unit
USDA-ARS-Eastern Regional Research Center
Wyndmoor, PA
Topics

- Corn Kernel Structure
- Ethanol Production Technologies and Products
- Conventional Enzymes
- Enzyme and Modified Corn Processing
- New Enzyme Use in Ethanol Production
- Enzymatic Germ/Fiber Recovery in a Dry Grind Ethanol Process
- Process Engineering and Cost Models being Used and Developed
Structure of the Corn Kernel

- Endosperm
- Pericarp
- Tip Cap
- Germ
Structure of Steeped Corn Kernel

- Pericarp
 - Cuticle
 - Epidermis
 - Mesocarp
- Cross & Tube Cells
- Aleurone Layer
- Starch Granules
- Endosperm
Corn Kernel Images

Confocal Laser Scanning Microscope

Scanning Electron Microscope
Corn Processing

- Dry Milling
- Dry Grind Processing
- Wet-Milling
Ethanol Production Technologies

Two Main Process for Fuel Ethanol Production

- Wet Milling
- Dry Grind Processing

- Wet-milling plants are capital intensive but produce high valued coproducts
- Dry grind plants cost less to build but lower valued coproducts
Coproduts from the Corn Wet-milling Process

- One bushel of Corn
 - 56 lbs
- Corn Wet-Milling Facility
- 2.5 gal of Ethanol
- CO₂
- 1.5 lbs of Corn Oil
- 12.4 lbs of Gluten Feed
- 3 lbs of Gluten Meal
- Livestock Feed
- Poultry Feed
Wet Milled Coproducts

- Germ
- Fiber
- Starch
- Gluten Meal
Coproducts from Corn Dry-grind Process

One bushel of Corn

Corn Dry-Grind Facility

56 lbs

CO₂

2.7 gal of Ethanol

17 lbs of DDGS

Livestock Feed
Why are the Ethanol Yields Different?

- Losses of starch to coproducts in the wet milling process:
 - Germ 1%
 - Corn Gluten Feed 1-2%
 - Corn Gluten Meal 2-3%

- Dry Grind processing has the “opportunity” to ferment all of the starch to ethanol.
Enzyme Advances

- Reduction of pH optimum
- Improved thermal stability
- Decrease of calcium requirement
- Minimization of maltulose formation
- Cost effective native starch degradation
Native Starch Hydrolysis in Germinating Corn
Conventional Dry Grind Corn Process

- Corn → Conventional Dry Grind Process
- Conventional Dry Grind Process → Ethanol
- Conventional Dry Grind Process → Carbon Dioxide
- Conventional Dry Grind Process → DDGS
Renessen’s Corn Fractionation Pilot Plant

[Diagram of the flow process]

From: Feedstuffs, Feb. 6, 2006, p. 17
Modified Dry Grind Processes

Enzymatic Or Quick Germ/Fiber Process

- Corn → Enzymatic Or Quick Germ/Fiber Process
 - Ethanol
 - Carbon Dioxide
 - DDGS
- Pericarp Fiber
- Germ

Wet Fractionation Process

Dry Degerm Defiber Process

- Corn → Dry Degerm Defiber Process
 - Ethanol
 - Carbon Dioxide
 - DDGS
 - Germ
 - Pericarp Fiber

Dry Fractionation Process
Enzymes in Modified Corn Processing

- **Wet Milling**
 - Protease

- **Enzymatic Germ/Fiber Recovery with Ethanol Production**
 - Protease
 - Starch hydrolyzing
 - Others
E-Milling: An Enzymatic Corn Wet Milling Process

- **Processing Steps**
 - Soaking (no SO$_2$ and no lactic acid)
 - 2-6 hr
 - Coarse grind
 - Incubation with enzyme
 (controlled pH and temperature)
 - 2-4 hr
 - Conventional wet milling fractionation

E-Milling US Patent # 6,566,125
Conventional Corn Wet Milling Process

- Steeping: 24-36 hrs
- Corn + Water + SO₂ → Steep
- Grind → Hydrocyclone
- Sieve → Fiber
- Centrifuge
- Germ
- Protein
- Starch

Enzymatic Corn Wet Milling Process

- Preprocessing: 6-8 hrs
- Corn + Water → Soak
- Enzymes → Incubate
- Grind → Hydrocyclone
- Sieve → Fiber
- Centrifuge
- Germ
- Protein
- Starch
100 g Wet Milling Results

![Graph showing starch yield (%) for different samples with categories Chemical Control and Buffer Control. The sample with Proteases has a notable increase in starch yield compared to others.](chart.png)
GC 106 and Bromelain Versus Conventional at the 1 kg Scale
Optimization of Enzyme Use in Batch Processing

Conv. Steep Bromelain Enzyme GC106 Enzyme

5 g 1 g 0.25 g 0.25 g 10 ml 10 ml 5 ml 2 ml 1 ml

SO₂
500 ppm 200 ppm 300 ppm 300 ppm

Bromelain Enzyme

Wet-milling Ethanol Production

1. **Steeping**
2. **Grinding** (Degermination mill)
3. **Sieving**
4. **Fine Grinding** (Degermination mill)
5. **Centrifugation**
6. **Hydrocyclone**
7. **Germ Dryer**
8. **Gluten Dryer**
9. **Fiber Dryer**

Products:*
- **Light Steep Water**
- **Heavy Steep Water**
- **Germ**
- **Fiber**
- **Starch**
- **Condensed Solubles**
- **CO₂**
- **Saccharification & Fermentation**
- **Yeast & Enzymes**
- **Liquefaction**
- **Dehydration column**
- **Ethanol**
- **Overhead product (Recycled back)**
- **Condensed Solubles**

Inputs:
- **Corn**
- **Gluten Feed**

Other:
- **Evaporator**
- **Stripping/Rectifying column**
- **Evaporator**
- **Overhead product (Recycled back)**
Benefits of E-Milling

- Reduced or eliminated use of SO_2
 - Many microorganisms are very sensitive
- Reduce processing time
- Potential reduction in water use
Degradation caused by inappropriate enzyme used during Enzymatic Milling

Bad Enzyme for E-Milling
Enzyme Addition During Fermentation

- Glucoamylase
- Protease
Dry-grind Ethanol Production

Corn

Grinding (Hammermill)

Water

Blending

Mash

Liquefaction

Yeast & Enzymes

Saccharification & Fermentation

CO₂

Overhead product (Recycled back)

Dehydration column

Ethanol

Stripping/Rectifying column

DDGS
Saccharification Controller

- Regulate the release of glucose during fermentation through the use of a dynamic controller
- Enzyme dosage is controlled during fermentation to match the yeast requirements
- Feedback data taken at intervals is used to adjust enzyme input rates
- Joint project between the University of Illinois and the USDA-ARS-ERRC
Fermentation Stressed Conditions

![Graph showing the concentration of glucose and ethanol over time with and without control.](image)
Fermentation Normal Conditions

![Graph showing concentration of glucose and ethanol over time with and without control.](image-url)
Glycerol Production

![Graph showing glycerol production over time with and without control.](image-url)
Non Traditional Enzyme Addition

- Protease
- Cell wall degrading
- Native starch degrading
Protease Addition in High Starch Fermentations

Final Ethanol Concentration (%v/v)

- Yeast A
 - Without Protease: 16%
 - With Protease: 17%

- Yeast B
 - Without Protease: 17%
 - With Protease: 18%

- Yeast C
 - Without Protease: 17%
 - With Protease: 19%

- Yeast D
 - Without Protease: 18%
 - With Protease: 20%
Protease Addition in High Starch Fermentations

Residual Glucose (%w/v)

Without Protease
With Protease

Yeast A
Yeast B
Yeast C
Yeast D
Amino Acid Profiles

Concentration (pmol/μL)

Aspartate
Glutamate
Asparagine
Serine
Glutamine
Histidine
Glycine
Threonine
Citrulline
Arginine
Alanine
Tyrosine
Valine
Methionine
Tryptophan
Phenylalanine
Isoleucine
Leucine
Lysine
Hydroxyproline
Proline

GC106 added
No GC106
Results

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Liquid Weight (g)</th>
<th>Solid Weight (g dry wt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>30.35</td>
<td>1.81</td>
</tr>
<tr>
<td>B</td>
<td>27.59</td>
<td>2.22</td>
</tr>
<tr>
<td>C</td>
<td>28.78</td>
<td>2.13</td>
</tr>
<tr>
<td>D</td>
<td>27.40</td>
<td>2.22</td>
</tr>
<tr>
<td>E</td>
<td>30.01</td>
<td>1.97</td>
</tr>
<tr>
<td>F</td>
<td>29.90</td>
<td>2.04</td>
</tr>
<tr>
<td>G</td>
<td>30.99</td>
<td>1.86</td>
</tr>
<tr>
<td>H</td>
<td>30.79</td>
<td>1.86</td>
</tr>
<tr>
<td>I</td>
<td>29.54</td>
<td>1.90</td>
</tr>
<tr>
<td>J</td>
<td>28.91</td>
<td>2.20</td>
</tr>
<tr>
<td>K</td>
<td>29.41</td>
<td>1.94</td>
</tr>
<tr>
<td>L</td>
<td>29.16</td>
<td>2.10</td>
</tr>
<tr>
<td>M</td>
<td>30.72</td>
<td>1.92</td>
</tr>
<tr>
<td>N</td>
<td>28.60</td>
<td>1.98</td>
</tr>
<tr>
<td>O</td>
<td>29.43</td>
<td>1.96</td>
</tr>
<tr>
<td>Control</td>
<td>27.36</td>
<td>2.16</td>
</tr>
</tbody>
</table>
Results

Enzyme A Control
Dry-grind Ethanol Production

Corn

Grinding (Hammermill)

Water

Blending

Mash

Liquefaction

Yeast & Enzymes

Saccharification & Fermentation

CO₂

Overhead product (Recycled back)

Dehydration column

Ethanol

DDGS

Stripping/Rectifying column
Degradation caused by enzymes used during Enzymatic Milling

Great Enzyme for Enzymatic Dry Grind Processing
Enzymatic Germ/Fiber Recovery in a Dry Grind Ethanol Process

- Modified dry grind ethanol process
- Utilizes enzymes to alter the specific gravity allowing physical separations
- Can be used to recover Germ or Germ and Pericarp fiber together
- Significant improvement over previous germ and fiber recovery processes
- Patent was allowed in November 2004
 US Patent #6,899,910
Enzymatic Germ and Fiber Recovery Process

Enzymatic Preprocessing
- Corn
 - Soaking
 - Incubation

Germ & Fiber Process
- Grinding (Degermination mill)
- Germ & Fiber Dryer
- Germ clones
 - Air
- Aspirator
- Germ
- Fiber
- Corn Fiber Oil
- Corn Fiber Gum
- Other Chemicals

Protein Recovery
- Fine Grinding (Degermination mill)
- Gluten Dryer
 - Gluten + Fine Fiber

Yeast & Enzymes
- Liquefaction
- Saccharification & Fermentation

Overhead product
- (Recycled back)

Dehydration column
- Stripping/Rectifying column
- Ethanol
- Solubles
Fermentation Profiles

Conv. - Conventional Corn Dry Grind Processing
QG - Quick Germ process
QGQF - Quick Germ and Quick Fiber
E-Mill - Enzymatic Germ and Fiber Recovery

Cereal Chemistry 82(2):187-190
DDGS Nutrient Analysis

<table>
<thead>
<tr>
<th>%</th>
<th>Conv.</th>
<th>QG</th>
<th>QGQF</th>
<th>E-Mill</th>
<th>Soy Meal</th>
<th>CGM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude Protein</td>
<td>28.50</td>
<td>35.91</td>
<td>49.31</td>
<td>58.50</td>
<td>53.90</td>
<td>66.70</td>
</tr>
<tr>
<td>Crude Fat</td>
<td>12.70</td>
<td>4.83</td>
<td>3.85</td>
<td>4.53</td>
<td>1.11</td>
<td>2.77</td>
</tr>
<tr>
<td>Ash</td>
<td>3.61</td>
<td>5.05</td>
<td>4.13</td>
<td>3.24</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Acid Detergent Fiber</td>
<td>10.8</td>
<td>8.22</td>
<td>6.80</td>
<td>2.03</td>
<td>5.95</td>
<td>6.88</td>
</tr>
</tbody>
</table>

 Conv. - Conventional Corn Dry Grind Processing
 QG - Quick Germ process
 QGQF - Quick Germ and Quick Fiber
 E-Mill - Enzymatic Germ and Fiber Recovery
 CGM - Corn Gluten Meal

Cereal Chemistry 82(2):187-190
Benefits of Germ and Fiber Recovery in a Dry Grind Ethanol Process

- Recovery of valuable coproducts: reduction in net corn cost
 - Corn germ
 - Corn fiber
 - Corn fiber oil
 - Corn fiber gum
 - Feedstock for fuels and chemicals
- Increased ethanol capacity
- Reduction in fouling of thin stillage evaporators
- Germ and Fiber dilute the protein content of DDGS
 - Removal increases the protein content of DDGS
Process Engineering & Cost Models

• Important to compare “Base Case” with the “Modified Process”.
 - Determine benefits and added costs.
 - Discover new areas for research.
 - Resolve problems
Dry Grind Process for Ethanol using Corn
Corn Cost Impact on Starch Production Costs

Cost of Corn $/Bu

- $0.03
- $0.04
- $0.05
- $0.06
- $0.07
- $0.08
- $0.09
- $0.10
- $0.11
- $0.12
- $0.13

Production Cost - Starch

Net Corn price

Gross Corn Price

Graph showing the relationship between the cost of corn and the production cost of starch.
Estimated Enzyme Cost Using Current Process Model Estimates

Batch Process:
- Amount of enzyme required: 1 mL/kg or 25.4 mL/bu
- Current Cost of enzyme: $15/kg or $15/850 mL
- Enzyme cost per bushel: $0.45 / bu

Continuous Process:
- Amount of enzyme required: 0.114 mL/kg or 2.9 mL/bu
- Current Cost of enzyme: $15/kg or $15/850 mL
- Enzyme cost per bushel: $0.05 / bu

Estimates calculated using current cost of enzyme.
No processing cost savings are included.
Pre-Commercialization

- E-Milling plant trial was conducted in the summer of 2005
 - (Starch recoveries were all higher than the conventional runs for each of the 4 enzymatic trials conducted)

- Pilot scale trial of the enzymatic germ and fiber recovery process was conducted in July at ERRC. Lab scale optimization completed.

- Economic Comparisons of each process with “Base Case” currently being done.
Wet Milling Plant Trial

1st Grind and Enzyme Addition

Gluten

Starch

Processing Team
Conclusions / Predictions

- Enzymes will continue to be an integral part of the ethanol process.
- Enzyme use will continue to expand in the ethanol industry as well as other commercial processes.
- New enzymes and applications will continue to be developed.
- The economics of enzyme use will continue to improve.
$340.00/Kg

$75.00 /Kg

$15.00 /Kg

$?
Acknowledgments

- Vijay Singh
- Andy McAloon
- Edna Ramirez
- Ping Wang
- Jennifer Thomas
- Jason Kwiatkowski
- Ana B.H. Thomas
- Murthy Ganti
- Peter Cooke
Thank You!