Spring 5-14-2015

Fouling in the High Pressure LDPE Process

Sebastian Fries
Technische Universität Darmstadt, Germany

Markus Busch
Technische Universität Darmstadt, Germany

Diego Mauricio Castañeda-Zúñiga
Saudi Basic Industries Corporation, The Netherlands

Jan Duchateau
Saudi Basic Industries Corporation, The Netherlands

Peter Neteboom
Saudi Basic Industries Corporation, The Netherlands

See next page for additional authors

Follow this and additional works at: http://dc.engconfintl.org/polymer_rx_eng_IX

Recommended Citation
Fouling in the High Pressure LDPE Process

Experimental and Computational Investigation Approach

Sebastian Fries, Markus Busch
Technische Universität Darmstadt, Germany

Diego Mauricio Castañeda-Zúñiga, Jan Duchateau,
Peter Neuteboom, Carolina Toloza Porras
Saudi Basic Industries Corporation, The Netherlands
What is LDPE Fouling?

- low-density polyethylene (LDPE) is produced under high temperatures (140°C – 330°C) and pressures (1000 bar – 3500 bar)
- fouling mechanisms still not understood
- fouling impacts:

 - productivity
 - operating safety
 - product quality
 - insulating effect
 - MWD tailing
Investigation Strategy

experiments

validation

classification

modeling

1D model

radial model

compartment model

understanding fouling formation

application of countermeasures
Experiments: Preliminary Considerations

- MWD tailing pronounced at higher surface-to-volume ratios and even existent at technical scales
 - fouling formation within the laminar boundary layer reasonable
 - idea: lab-scale reactor with as much laminar flow as possible
Experiments: Setup

- combined autoclave and tubular reactor setup
- autoclave
 - 100 mL
 - premixing, preheating
 - $p = 2000$ bar
- tubular reactor
 - laminar flow
 - heated
 - $L = 2$ m, $d = 4.8$ mm
 - ~ 30 sec residence time
Experiments: Results

- fouling material strongly branched
 - indication for polymer-rich environment

- pronounced MWD tailing with increasing running time
Modeling: Model Family

1D module
- plug flow (ODEs)
- complex reaction network with primary and secondary radicals
- rigorous MWD

radial module
- radial profiles (PDEs)
- laminar velocity profile
- wall temperature from 1D module (boundary condition)
- simplified kinetic scheme

compartment module
- two ideally mixed compartments for center and wall layer (ODEs)
- temperatures and velocities from radial module
- rigorous MWD
Modeling: Model Family

1D module

radial module

compartment module

increasing information about polymeric microstructure near the wall
Modeling: 1D Module

- slow heating due to laminar flow

- satisfying agreement of modeled distribution with main MWD
Modeling: Radial Module

- temperature contour plot
 - faster heat transport in the outer area

- M_n contour plot
 - slightly lower M_n at the wall \rightarrow more transfer to CTA
Modeling: Radial Module

\[D_{\text{polymer}} = D_{\text{monomer}} \]
\[X_{\text{wall}} = 5.4\% \]
\[X_{\text{avg}} = 2.7\% \]

\[D_{\text{polymer}} = \frac{1}{10} D_{\text{monomer}} \]
\[X_{\text{wall}} = 11.9\% \]
\[X_{\text{avg}} = 1.9\% \]

\[D_{\text{polymer}} = \frac{1}{20} D_{\text{monomer}} \]
\[X_{\text{wall}} = 15.7\% \]
\[X_{\text{avg}} = 1.8\% \]
Modeling: Radial Module

- viscosity gradient influences velocity profile
- description via Stokes law possible

\[
\frac{dw}{dr} = -\frac{1}{2\eta} \frac{dp}{dL} \quad r
\]
Modeling: Radial Module

- higher friction leads to lower wall speeds
- fouling as a self-accelerating process as proposed by Krasnyk et al.
- implementation in radial module follows

Modeling: Compartment Module

- \(D_{\text{polymer}} = D_{\text{monomer}} \)
- \(\dot{m}_{\text{shell}} = 1/100 \dot{m}_{\text{total}} \)
- significant broadening even for fast diffusing polymer
- same prediction as radial module regarding \(M_n \)

<table>
<thead>
<tr>
<th></th>
<th>core</th>
<th>shell</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_n) (kg/mol)</td>
<td>13.6</td>
<td>13.4</td>
</tr>
<tr>
<td>(M_w) (kg/mol)</td>
<td>31.4</td>
<td>81.0</td>
</tr>
</tbody>
</table>
Summary

- generating of tailed distributions with the chosen experimental setup possible
- fouling material highly branched
- model family delivers coherent results
- polymer diffusion speed crucial for buildup of higher polymer concentrations close to the wall
- indication that fouling is the result of a self-accelerating process; effects are to be investigated
Acknowledgements

- Computing in Technology GmbH, Rastede, Germany
Fouling in the High Pressure LDPE Process

Experimental and Computational Investigation Approach

Sebastian Fries, Markus Busch
Technische Universität Darmstadt, Germany

Diego Mauricio Castañeda-Zúñiga, Jan Duchateau,
Peter Neuteboom, Carolina Toloza Porras
Saudi Basic Industries Corporation, Netherlands