Towards a therapeutic HCV vaccine - a preclinical and clinical learning curve

VACCINE TECHNOLOGY II
Albufeira, June 1 - 6, 2008

Alexander von Gabain

Intercell develops vaccines for the prevention and treatment of infectious diseases.
The treatment of chronic HCV patients is currently based on (pegylated)-**Interferon and Ribavirin**

- Significant side effects
- Not all infected patients can be treated
- Significant costs of treatment (up to 30,000 USD per year)
- Long duration (up to 48 weeks)

Sustained virus response rates are between 50 and 60%, for **genotype 1 only 43-46%**

Stronger, broader, quicker and more sustained CD4 and CD8 T-cell responses in self-limited course of acute hepatitis C

Response to antiviral therapy may be associated with increased T-cell responses

Viral persistence in chronic hepatitis C is associated with immune evasion
- impaired function of HCV-specific T-cells
- mutational T-cell epitope escape

Chimp models

The T-cell system and Hepatitis C virus infection

- IFN-gamma ELIspot
- HLA-tetramer (CCR7, CD45RA)
- IFN-gamma ELIspot
- Lymphoproliferation

- Th 2 Cytokines: IL-4, -5, IL-10, IL-13

- APC
 - Endogenous processed antigens
 - MHC I
 - MHC II

- CD 4
 - Th 1 Cytokines: IFNγ, TNFα

- CD 8
 - Clonal Expansion
 - Tc1 and Tc2 Cytokines, Cytotoxicity

- NK
 - NKT

- B-cells
 - Antibodies

- Hepatocyte
 - B-cells
 - APC
 - Endogenous processed antigens

- Clonal Expansion
 - Tc1 and Tc2 Cytokines, Cytotoxicity
The IC41 HCV vaccine: 5 synthetic peptides adjuvanted with Poly-L-Arginine

<table>
<thead>
<tr>
<th>HCV-Genome</th>
<th>Intercell peptide #</th>
<th>Class I</th>
<th>Class II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Envelope</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-structural proteins</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th>E1</th>
<th>E2</th>
<th>NS2</th>
<th>NS3</th>
<th>NS4</th>
<th>NS5</th>
</tr>
</thead>
</table>

Core

<table>
<thead>
<tr>
<th>23-44</th>
<th>132-140</th>
<th>1073-1081</th>
<th>1248-1261</th>
<th>1764-1786</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRB1*1101</td>
<td>DRB1*1101</td>
<td>DRB1*0101</td>
<td>DRB1*0101</td>
<td>DRB1*0101</td>
</tr>
<tr>
<td>DRB1*0401</td>
<td>DRB1*0401</td>
<td>DRB1*0401</td>
<td>DRB1*0401</td>
<td>DRB1*0401</td>
</tr>
<tr>
<td>DRB1*0404</td>
<td>DRB1*0404</td>
<td>DRB1*0404</td>
<td>DRB1*0404</td>
<td>DRB1*0404</td>
</tr>
<tr>
<td>DRB1*0701</td>
<td>DRB1*0701</td>
<td>DRB1*0701</td>
<td>DRB1*0701</td>
<td>DRB1*0701</td>
</tr>
<tr>
<td>DRB1*1101</td>
<td>DRB1*1101</td>
<td>DRB1*1101</td>
<td>DRB1*1101</td>
<td>DRB1*1101</td>
</tr>
<tr>
<td>DRB1*1501</td>
<td>DRB1*1501</td>
<td>DRB1*1501</td>
<td>DRB1*1501</td>
<td>DRB1*1501</td>
</tr>
</tbody>
</table>

>80% conserved regions in HCV genotypes 1, 2, 3
Sequence variability in the NS3-1073 CTL epitope

<table>
<thead>
<tr>
<th>Position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type</td>
<td>C</td>
<td>I</td>
<td>N</td>
<td>G</td>
<td>V</td>
<td>C</td>
<td>W</td>
<td>T</td>
<td>V</td>
</tr>
<tr>
<td>HLA binding</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>TCR receptor</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>(*)&</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Gen. 1</td>
<td>T</td>
<td>S</td>
<td>A</td>
<td>M</td>
<td>S</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gen. 2</td>
<td>T,S</td>
<td>S,A</td>
<td>I</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gen. 3</td>
<td>T,S,A</td>
<td>G</td>
<td>D</td>
<td>T,I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gen. 4</td>
<td>A</td>
<td></td>
<td></td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gen. 5</td>
<td>A</td>
<td></td>
<td></td>
<td>M</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gen. 6</td>
<td>T,S,A</td>
<td>M,L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conservative (green) and non-conservative (red) amino acid exchanges in each position of the NS2-1073 peptide among the different genotypes of the Hepatitis C Virus.

* indicates the positions important for HLA binding or for the TCR receptor recognition.
Cross-genotype recognition of twenty-eight NS3-1073 peptide variants

IFN-γ ELISPOT USING T-CELLS INDUCED AGAINST WILDTYPE

In vitro T-cell line

Ex vivo Elispot IC41 vaccinated healthy volunteer
IC41-1: 60 chronic HCV patients, standard IFN/riba therapy non-responders/relapsers

TREATMENT SCHEDULE AND STUDY DESIGN (IC41-201)

Treatment schedule

<table>
<thead>
<tr>
<th>Study week</th>
<th>-4</th>
<th>0</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>24</th>
<th>28</th>
<th>32</th>
<th>44</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccinations</td>
<td></td>
</tr>
<tr>
<td>Randomization</td>
<td></td>
</tr>
<tr>
<td>Study period</td>
<td></td>
</tr>
<tr>
<td>Screening</td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
</tr>
<tr>
<td>Follow up</td>
<td></td>
</tr>
<tr>
<td>Immunological checks</td>
<td></td>
</tr>
</tbody>
</table>

Study design

<table>
<thead>
<tr>
<th></th>
<th>5 Hepatitis C Peptides**</th>
<th>Poly-Arginine**</th>
<th>No. of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control groups</td>
<td>B</td>
<td>0.00</td>
<td>2.00</td>
</tr>
<tr>
<td>C</td>
<td>5.00</td>
<td>0.00</td>
<td>12</td>
</tr>
<tr>
<td>Treatment groups</td>
<td>G</td>
<td>2.50</td>
<td>1.25</td>
</tr>
<tr>
<td>H</td>
<td>2.50</td>
<td>2.00</td>
<td>12</td>
</tr>
<tr>
<td>K</td>
<td>5.00</td>
<td>2.00</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Study period: end 2002 - mid 2004
** Different dose levels

Klade et al. Gastroenterology 2008
Interferon gamma ELISpot using frozen PBMC

ELISpot: > 3x OVER BACKGROUND, AT LEAST 15 PER MIO. PBMC

<table>
<thead>
<tr>
<th>Positive Controls: CMV, EBV, Flu-peptides Con A</th>
</tr>
</thead>
</table>

| Assay standard: control cells HIV vs. CMV peptides |

<table>
<thead>
<tr>
<th>IC41102E0096</th>
<th>C.T.L. Cellular Technology Ltd.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6</td>
<td>7 8 9 10 11 12</td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CMV</td>
<td>HIV</td>
</tr>
<tr>
<td>Ipep83</td>
<td>Ipep1051</td>
</tr>
<tr>
<td>Ipep1426</td>
<td>Ipep1334</td>
</tr>
<tr>
<td>Ipep84</td>
<td>Ipep1874/75</td>
</tr>
<tr>
<td>B</td>
<td>EBV</td>
</tr>
<tr>
<td>Ipep87</td>
<td>FLU</td>
</tr>
<tr>
<td>Ipep89</td>
<td>ConA</td>
</tr>
<tr>
<td>C</td>
<td>HBV</td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
</tbody>
</table>
IC41 induces Th1/Tc1 type immune responses in non-responder patients

Phase II in non-responders

Klade et al. Gastroenterology 2008,
Firbas et al., 2006

* 2.5 mg peptides; 2.0 mg Poly-Arginine

CLASS I AND II RESPONSE RATES (ELISPOT)

<table>
<thead>
<tr>
<th>Dose H*</th>
<th>Peptide only (5 mg)</th>
<th>Poly-Arginine only (2 mg)</th>
<th>IC41/Dose H*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD8+ and CD4+ T-cells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0%</td>
<td>0.0%</td>
<td>25.0%</td>
<td></td>
</tr>
<tr>
<td>CD4+ T-cells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0%</td>
<td>0.0%</td>
<td>33.3%</td>
<td></td>
</tr>
</tbody>
</table>
IC41 induces T-cell proliferation in non-responder patients

MEDIAN CLASS II T-CELL PROLIFERATION: DOSE GROUP H

<table>
<thead>
<tr>
<th>Phase II in non-responders</th>
</tr>
</thead>
</table>

Klade et al. Gastroenterology 2008

* 2.5 mg peptides; 2.0 mg Poly-Arginine

Dose Group H*
Control Peptide
Control Poly-Arginine

vaccinations

end of vaccination

Week of study

-4 0 4 8 12 16 20 24 32 44

Median response stimulation index

4 5 6
Results of concluded Phase II study – IC41 already showed trend in efficacy

PHASE II NON RESPONDERS (IC41-1)

Group results of 1 Log responders in Phase II trial*

<table>
<thead>
<tr>
<th>Group</th>
<th>Dosage</th>
<th>N</th>
<th>Resp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>5.00/2.00</td>
<td>2</td>
<td>17%</td>
</tr>
<tr>
<td>H</td>
<td>2.50/2.00</td>
<td>1</td>
<td>8%</td>
</tr>
<tr>
<td>G</td>
<td>2.50/1.25</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>B</td>
<td>0.00/2.00</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>C</td>
<td>5.00/0.00</td>
<td>0</td>
<td>0%</td>
</tr>
</tbody>
</table>

Results of patient with viral load reduction in high dose group*

Class I responses of >10 spots/200,000 are associated with transient viral load reductions

Klade et al. Gastroenterology In revision
Evidence for mutational T-cell epitope escape in a patient responding to IC41-1 vaccination

RESULTS OF PATIENT WITH VIRAL LOAD REDUCTION*

* Published and presented at the EASL Meeting in Vienna, April 2006

ELISPOT

Spots per 200,000 PBMC

HCV-RNA

- CINGVCWTV
- CINGVCWSV
- CINGVCWSV
- CINGVCWSV
- Baseline

Week of clinical trial

- 6 vaccinations monthly

Threshold viral load effect

HCV-RNA (Log IU/ml)

- 6 vaccinations monthly

Impaired recognition of an HCV T cell epitope evolving in a single patient during vaccination

- IC41 (Ipep89)
- V-variant
- I-variant

Phase II in non-responders

* Published and presented at the EASL Meeting in Vienna, April 2006
IC41-2: Combination with standard therapy

Patients with chronic hepatitis C of genotype I scheduled for standard treatment for 48 weeks already treated for 28 weeks and responded at week 12

IC41
6 vaccinations s.c. in 4 weeks intervals

PEGINF/RBV

Weeks after start of standard therapy V visit

Relapse rate wk 52 / 60 / 72

Immunological Assays wk 28 / 48 / 52 / 60 / 72

Heiner Wedemeyer
Christoph Klade et al.
AASLD 2007
Sustained responders show a stronger and more frequent T-cell response – Target Population*

INTERFERON \(\gamma \) ELISPOTS IN RELAPSED PATIENTS (N= 8) VS. SVR (N=14)

*Target Population N = 23, for 1 patient missing HCV-RNA data between V8–V10
Conclusions from non-responder patients (IC41-1) and late add-on to PEG-IFN/RBV (IC41-2)

- Favorable safety profile in chronic HCV patients with or without PEG-IFN/RBV standard therapy
- Optimal vaccine dose (2.5 mg peptides / 2.0 mg poly-L-Arg)
- Th1/Tc1 type responses in chronic HCV patients, no apparent negative influence through PEG-IFN/RBV
- Several transient 1 log Hepatitis C - RNA responders at optimal dose
- RNA responses associated with strongest CD8+ responses achieved

T-cell immunogenicity requires optimization (rate, strength, breadth, sustainability)
Improving immunicity of IC41 in HLA-transgenic mouse model

TEST APPLICATION SITES ± IMIQUIMOD

- **HHD.2 mice**
 - Dose/100μl/mouse: 100μg/peptide + 400μg pR (lot H in-house mixture AB)

- **Exp. scheme**:
 - day 0, 14, 28, 42, 56, 70
 - s.c. or i.d. injection
 - day 7 after 6th inj.
 - IFN-g ELIspot (spleen cells)
 - day 29 after 6th inj.
 - APC transfer
 - day 30 after 6th inj.
 - FACS analysis (spleen cells)

In vivo CTL assay

- **CD8⁺ T-cells**
 - HHD.2 mice immunized with
 - Dose/100μl/mouse: 100μg/peptide + 400μg pR (lot H in-house mixture AB)
 - exp. scheme:
 - day 0, 14, 28, 42, 56, 70
 - s.c. or i.d. injection
 - day 7 after 6th inj.
 - IFN-g ELIspot (spleen cells)
 - day 29 after 6th inj.
 - APC transfer
 - day 30 after 6th inj.
 - FACS analysis (spleen cells)

- **CD4⁺ T-cells**
 - HHD.2 mice injected with
 - Dose/100μl/mouse: 100μg/peptide + 400μg pR (lot H in-house mixture AB)
 - exp. scheme:
 - day 0, 14, 28, 42, 56, 70
 - s.c. or i.d. injection
 - day 7 after 6th inj.
 - IFN-g ELIspot (spleen cells)
 - day 29 after 6th inj.
 - APC transfer
 - day 30 after 6th inj.
 - FACS analysis (spleen cells)

Legend:
- medium
- Ipep 83
- Ipep 84
- Ipep 87
- Ipep 89
- Ipep 1426
- Ipep 1334
- Ipep 1874
- Ipep 1875
- pR
- Ipep 1274
IC41-3 Study concluded January 2008

OPTIMAL VACCINATION SCHEDULE IN TREATMENT NAIVE PATIENTS

» 50 Chronic HCV patients, treatment naive, HCV Genotype 1.
Desired subset with low viral load at baseline

8 vaccinations*

» First vaccination on September 26 2006, first data Q2/2007

» Endpoints: ▪ Decline in HCV-RNA
▪ T-cell response

» Status ▪ Participating countries: Romania, Poland, Germany
▪ End of recruitment on track for February 2007

* Bi-weekly; intradermal; topical Aldara® (3M)
Primary endpoint met – a weak, but statistically significant HCV-RNA reduction

OVERVIEW IC41-3 PHASE II DATA

<table>
<thead>
<tr>
<th>Visits</th>
<th>V0</th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
<th>V5</th>
<th>V6</th>
<th>V7</th>
<th>V8</th>
<th>V9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weeks</td>
<td>-2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

Total study group*

<table>
<thead>
<tr>
<th>Change from Baseline***</th>
<th>Log HCV-RNA/copies/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st vaccination</td>
<td></td>
</tr>
<tr>
<td>last vaccination</td>
<td></td>
</tr>
</tbody>
</table>

High viral load patients (>2 mio copies/ml)

<table>
<thead>
<tr>
<th>Visits</th>
<th>V0</th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
<th>V5</th>
<th>V6</th>
<th>V7</th>
<th>V8</th>
<th>V9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weeks</td>
<td>-2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

* 46 patients
** 25 patients
*** 95% confidence intervals
Conclusions from IC41 trials

» Favorable safety profile in chronic HCV patients with or without PEG-IFN/RBV standard therapy

» Optimal vaccine dose / schedule identified

» Th1/Tc1 type responses in chronic HCV patients, no apparent negative influence through PEG-IFN/RBV

» Antiviral activity demonstrated in patients with strongest CD8+ responses, and treatment group with optimal vaccination
HCV therapeutic vaccination: Forward Strategy

Development of second generation vaccine

- More & better peptides (HLA-restriction, efficacy)
- Improved T-cell adjuvant (IC31®)

Future plans: combination therapy

- plus PEG-IFN/RBV
- plus novel small molecule inhibitor
Identification of further T-cell peptides

T-CELL EPITOPE IDENTIFICATION PROGRAM

Overlapping set of synthetic peptides derived from viral genome

Defined T-cell epitopes for therapeutic vaccines

Viral genome

Epitope Capture: Binding to human HLA receptors

Reacting with T-cell derived from humans with positive disease outcome

Induced in HLA-transgenic mice

Schalich & Klade 2008, Biol Chem

Kubitschke & Klade 2008, in preparation
Identification of HCV vaccine candidate peptides beyond IC41

HLA-COVERAGE: 80-90% IN EUROPE, USA AND JAPAN

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Class I epitopes</th>
<th>Class II epitopes</th>
<th>Human PBMC screening</th>
<th>tg mice screening</th>
<th>Epitope Capture</th>
<th>Additional predicted epitopes</th>
</tr>
</thead>
<tbody>
<tr>
<td>lpep 1835</td>
<td>A2, A3, B7</td>
<td>DR11</td>
<td>✓</td>
<td>✓ (B7 / lpep 1506)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>lpep 1829</td>
<td>A2, B7</td>
<td>DR1, 7, 11(?)</td>
<td>✓</td>
<td>✓ B7, (A2)</td>
<td>++(+)</td>
<td>A24</td>
</tr>
<tr>
<td>lpep 1799</td>
<td>B35</td>
<td>DR1, 4</td>
<td>✓</td>
<td>✓ (DR4 / lpep 1563)</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>lpep 1798</td>
<td>A2, A3, A11</td>
<td>DR1, 4, 7</td>
<td>✓</td>
<td>✓ (✓) (A2 no final data)</td>
<td>+++</td>
<td>A24</td>
</tr>
<tr>
<td>lpep 1827</td>
<td>A24</td>
<td>DR1, 7, 11</td>
<td>✓</td>
<td>Not applicable</td>
<td>+++</td>
<td>B8</td>
</tr>
<tr>
<td>lpep 1846</td>
<td>A2, A11(?) , Cw7</td>
<td>DR1, 4, 7, 11</td>
<td>✓</td>
<td>✓ (DR4 / lpep 1650)</td>
<td>++++</td>
<td>A24</td>
</tr>
<tr>
<td>lpep 1547</td>
<td>A2</td>
<td>DR1, 4, 7, 11</td>
<td>✓ (✓) (from Day et al.)</td>
<td>✓ DR4</td>
<td>++++</td>
<td></td>
</tr>
</tbody>
</table>
| lpep 1624 | B60 | DR7 | ✓ | (as expected negative for A2, B7, DR4) | + | }

IVS: *in vitro* stimulation of PBMC from HLA-matched healthy donors

PCT/EP2003/009482

Otava & Klade

AASLD 2004

Kubitschke & Klade

in preparation
IC31®: a TLR agonist comprising two chemically defined biodegradable components

» **KLK:**
 - Antimicrobial peptide H-KLKL₅KLK-OH
 - Type 2 immune responses (+ proteins)
 - Depot formation at injection site
 - Enhancement of antigen and ODN1a uptake by APC

» **ODN1a:**
 - Oligodeoxynucleotide oligo-(dIdC)$_{13}$ phosphodiester, ssDNA
 - Type 1 induction
 - Activation of APC (Dendritic Cells)
 - TLR-9 / MyD88-dependent signaling

Potent and sustained Th-1 / type 2 responses

- T cell
- B cell
IC31®: Induction of potent type 1 cellular immune responses

EXAMPLE: IMMUNIZATION WITH MODEL PEPTIDES

PEPTIDE-SPECIFIC IFN-γ PRODUCTION

- OVA$_{257-264}$
- mTRP-2$_{181-188}$

CTL - EFFECTOR CELLS

- naive
- mTRP-2$_{181-188}$
- mTRP-2$_{181-188}$ + IC31®

Specific killing of APC
Protective immunity of a novel TB subunit vaccine adjuvanted with IC31®

PRECLINICAL EVALUATION – SURVIVAL (GUINEA PIG)*

* 3x i.m. injection, 4-week interval
Aerosol infection; 16 weeks after first injection

BCG
Ag85B/ESAT-6 + IC31®
Naive/Saline

% survival

0 10 20 30 40 50 60 70 80 90 100 110 120

0 10 20 30 40 50 60 70 80 90 100 110 120

Weeks post infection

PAGE 25 VACCINE TECHNOLOGY II JUNE 2, 2008
Protectivity is linked to IFN-γ producing T-cells indicative for Th-1 driven immunity

DEFINITION OF PROTECTION MARKERS (MOUSE MODEL)

RESIDUAL BACTERIA (lung)

<table>
<thead>
<tr>
<th></th>
<th>BCG</th>
<th>IC31®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log 10 resistance</td>
<td>1,0</td>
<td>0,5</td>
</tr>
</tbody>
</table>

IFN-γ production

<table>
<thead>
<tr>
<th></th>
<th>BCG</th>
<th>IC31®</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN-γ (pg/ml)</td>
<td>0</td>
<td>6000</td>
</tr>
</tbody>
</table>
Induction of antigen-specific T-cells in humans vaccinated with the novel TB subunit vaccines

DATA FROM TB PHASE I STUDY: STRONG TH-1 INDUCTION

IFN-\(\gamma\) in T-cell supernatants
(Ag85B/ESAT-6-specific ELISA; Estimated Marginal Means)

Frequency of IFN-\(\gamma\) prod. T-cells
(Ag85B/ESAT-6-specific ELISpot; Estimated Marginal Means)
Dramatic improvement of IC41 by replacing poly(Arg) with IC31® (IC410)

Exp. scheme:
- Day 0, 14, 28: i. fp. injection
- Day 34: APC transfer
- Day 35: FACS analysis (LNC) ELIspot (spleen cells)

Dose/100µl/mouse:
- **IC41:** 200µg/peptide + 400µg pR43 (lot K, batch PD03126)
- **IC410:** 50µg/peptide + 35nmol KLK+ 1.4nmol ODN1a (inhouse mixture)

Legend:
- % killed APC
- **Ipep 1274** (irrel.)
- **Ipep 87, 89** (rel.)

IFN-γ production
- Number of IFN-γ producing cells/million CD4 depleted SPCs

CD8+ T cell effector function
- Percentage killing
- **Ipep 89**
Acknowledgments

INTERCELL

Alexander von Gabain
Erich Tauber
Elisabeth Schuller
Karen Lingnau

HCV study group

Michael P. Manns
Heiner Wedemeyer
Christoph Sarrazin
Thomas Berg
Holger Hinrichsen
Grazyna Cholewinska
Stefan Zeuzem
Hubert Blum
Ulrich Spengler
Rudolf Stauber
Bernd Jilma