

Chronic Hepatitis C: Standard of Care

- » The treatment of chronic HCV patients is currently based on (pegylated)-Interferon and Ribavirin
 - Significant side effects
 - Not all infected patients can be treated
 - Significant costs of treatment (up to 30.000 USD per year)
 - Long duration (up to 48 weeks)
- » Sustained virus response rates are between 50 and 60%, for genotype 1 only 43-46% ^{1,2}
- 1. Fried M. et al. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N. Engl. J. Med., Vol. 347, 13, 13 Sep 2002.
- 2. Manns M.P. et al. PINF alfa-2b plus ribavirin compared with INF alfa-2b plus ribavirin for initial treatment for chronic hepatitis C: a randomized trial. Lancet, Vol. 358 (9286), Sep 2001

HCV: importance of T-cell responses

- » Stronger, broader, quicker and more sustained
 CD4 and CD8 T-cell responses in self-limited course of acute hepatitis C
- » Response to antiviral therapy may be associated with increased T-cell responses
- » Viral persistence in chronic hepatitis C is associated with immune evasion
 - impaired function of HCV-specific T-cells
 - mutational T-cell epitope escape

» Chimp models

Diepolder 1995, Missale 1996, Rehermann 1996, Lamonaca 1999, Gruener 2000, Thimme 2001, Wedemeyer 2002, Lauer 2002&2004, Cox 2005, Boettler 2005, Spangenberg 2005,...

The T-cell system and Hepatitis C virus infection

Intercell

The IC41 HCV vaccine:

5 synthetic peptides adjuvanted with Poly-L-Arginine

Sequence variability in the NS3-1073 CTL epitope

Position	1	2	3	4	5	6	7	8	9
Wild type	С		Ν	G	V	С	W	Т	V
HLA binding		*					*		*
TCR receptor			*		*	(*)	*		
Gen.1		Т	S		Α		Μ	S	
Gen.2	T,S		S,A		T	L			
Gen.3	T,S,A		G	D		T,I			
Gen.4	Α					М			
Gen.5						М			L
Gen.6	T,S,A					M,L			

Fytili et al., Vaccines 2008

PAGE 5

Conservative (green) and non-conservative (red) amino acid exchanges in each position of the NS2-1073 peptide among the different genotypes of the Hepatitis C Virus.

* indicates the positions important for HLA binding or for the TCR receptor

VACCINE TECHNOLOGY II

recognition.

Cross-genotype recognition of twenty-eight NS3-1073 peptide variants

IFN- γ ELISPOT USING T-CELLS INDUCED AGAINST WILDTYPE

Phase II in nonresponders

IC41-1: 60 chronic HCV patients, standard IFN/riba therapy non-responders/relapsers

TREATMENT SCHEDULE AND STUDY DESIGN (IC41-201)

Treatment schedule Study design Study week 12 16 20 24 28 32 44 -4 0 8 Vaccinations **5 Hepatitis C** Poly-No. of Random-**Peptides** Arginine**** patients ization Study Control 0.00 2 00 12 B period groups С 5.00 0.00 12 » Screening Treatment G 2.50 1.25 12 » Treatgroups Н 2.50 2.00 12 ment Klade et al. 5.00 2.00 12 K » Follow Gastroenterology up 2008 Total 60 Immunol-* Study ogical period: checks end 2002 mid 2004 ** Different dose levels PAGE 7 VACCINE TECHNOLOGY II JUNE 2, 2008

Interferon gamma ELIspot using frozen PBMC

intercel

ELISPOT: > 3x OVER BACKGROUND, AT LEAST 15 PER MIO. PBMC

intercell SMART VACCINES

Evidence for mutational T-cell epitope escape in a patient responding to IC41-1 vaccination

RESULTS OF PATIENT WITH VIRAL LOAD REDUCTION*

Phase II in nonresponders

IC41-2: Combination with standard therapy Patients with chronic hepatitis C of genotype I scheduled for standard treatment for 48 weeks already treated for 28 weeks and responded at week 12 IC41 6 vaccinations s.c. in 4 weeks intervals **PEGINF/RBV** Relapse rate wk 52 / 60 / 72 8 12 16 20 24 28 32 36 40 44 52 48 60 72 **V3 V2 V4 V5** V6 **V7 V8 V9** V10 Weeks after start of standard therapy V visit Heiner Wedemeyer Christoph Klade et al. Immunological Assays wk 28 / 48 / 52 / 60 / 72 AASLD 2007 PAGE 13 VACCINE TECHNOLOGY II JUNE 2, 2008

SMART VACCINE

et al.

Sustained responders show a stronger and more frequent T-cell response – Target Population*

INTERFERON γ ELISPOTS IN RELAPSED PATIENTS (N= 8) VS. SVR (N=14)

Conclusions from non-responder patients (IC41-1) and late add-on to PEG-IFN/RBV (IC41-2)

- » favorable safety profile in chronic HCV patients with or without PEG-IFN/RBV standard therapy
- » optimal vaccine dose (2,5 mg peptides / 2,0 mg poly-L-Arg)
- » Th1/Tc1 type responses in chronic HCV patients, no apparent negative influence through PEG-IFN/RBV
- » several transient 1 log Hepatitis C RNA responders at optimal dose
- » RNA responses associated with strongest CD8+ responses achieved

» T-cell immunogenicity requires optimization (rate, strength, breadth, sustainability)

Improving immunicity of IC41 in HLA-transgenic mouse model

TEST APPLICATION SITES ± IMIQUIMOD

Primary endpoint met – a weak, but statistically significant HCV-RNA reduction

Point Estimate

Intercell

OVERVIEW IC41-3 PHASE II DATA

» Favorable safety profile in chronic HCV patients with or without PEG-IFN/RBV standard therapy

» Optimal vaccine dose / schedule identified

» Th1/Tc1 type responses in chronic HCV patients, no apparent negative influence through PEG-IFN/RBV

» Antiviral activity demonstrated in patients with strongest CD8+ responses, and treatment group with optimal vaccination

HCV therapeutic vaccination: Forward Strategy

Development of second generation vaccine

- » More & better peptides (HLA-restriction, efficacy)
- » Improved T-cell adjuvant (IC31[®])

Future plans: combination therapy

- » plus PEG-IFN/RBV
- » plus novel small molecule inhibitor

Identification of further T-cell peptides

interce

T-CELL EPITOPE IDENTIFICATION PROGRAM

Identification of HCV vaccine candidate peptides beyond IC41

HLA-COVERAGE: 80-90% IN EUROPE, USA AND JAPAN

IVS: in vitro	Peptide	Class I epitopes	Class II epitopes	Human PBMC screening	tg mice screening	Epitope Capture	Additional predicted epitopes				
stimulation of PBMC from HLA-matched healthy donors	Ipep 1835	A2, A3, B7	DR11	~	√ (B7 / Ipep 1506)	+					
	lpep 1829	A2, B7	DR1, 7, 11(?)	✓ (Ipep1605, IVS)	√ B7, (A2)	++(+)	A24				
	lpep 1799	B35	DR1, 4	\checkmark	✓ (DR4 / Ipep 1563)	++					
	lpep 1798	A2, A3, A11	DR1, 4, 7	~	(✓) (A2 no final data)	+++	A24				
	lpep 1827	A24	DR1, 7, 11	✓ (Ipep1801)	Not applicable	+++	B8				
	lpep 1846	A2, A11(?), Cw7	DR1, 4, 7, 11	✓ (Ipep1800, IVS)	✓ (DR4 / Ipep 1650)	++++	A24				
PCT/EP2003/009482	Ipep 1547	A2	DR1, 4, 7, 11	(√) (from Day et al.)	√ DR4	++++					
Otava & Klade AASLD 2004	lpep 1624	B60	DR7	\checkmark	 ✓ (as expected negative for A2, B7, DR4 						
Kubitschke & Klade in preparation			l			<u> </u>					
PAGE 22	VACCINE TECHNOLOGY II JUNE 2, 2008										

IC31[®]: a TLR agonist comprising two chemically defined biodegradable components

» KLK:

antimicrobial peptide H-KLKL₅KLK-OH

- Type 2 immune responses (+ proteins)
- Depot formation at injection site

 Enhancement of antigen and ODN1a uptake by APC

» ODN1a:

oligodeoxynucleotide oligo-(dldC)₁₃ phosphodiester, ssDNA

- Type 1 induction
- Activation of APC (Dendritic Cells)
- TLR-9 / MyD88-dependent signaling

Protective immunity of a novel TB subunit vaccine adjuvanted with IC31[®]

PRECLINICAL EVALUATION – SURVIVAL (GUINEA PIG)*

Protectivity is linked to IFN- γ producing T-cells indicative for Th-1 driven immunity

DEFINITION OF PROTECTION MARKERS (MOUSE MODEL)

Induction of antigen-specific T-cells in humans vaccinated with the novel TB subunit vaccines

DATA FROM TB PHASE I STUDY: STRONG T_H-1 INDUCTION

STATENS SERUM

IFN-γ in T-cell supernatants (Ag85B/ESAT-6-specific ELISA; Estimated Marginal Means) Frequency of IFN-γ prod. T-cells (Ag85B/ESAT-6-specific ELISpot; Estimated Marginal Means)

Dramatic improvement of IC41 by replacing poly(Arg) with IC31[®] (IC410)

Acknowledgments

INTERCELL

Alexander von Gabain Erich Tauber Elisabeth Schuller Karen Lingnau

HCV study group

Michael P. Manns Heiner Wedemeyer Christoph Sarrazin Thomas Berg Holger Hinrichsen Grazyna Cholewinska Stefan Zeuzem Hubert Blum Ulrich Spengler Rudolf Stauber Bernd Jilma