Engineering Conferences International ECI Digital Archives

CO2 Summit II: Technologies and Opportunities

Proceedings

Spring 4-11-2016

AEP perspectives on 21st century power generation

Matt Usher AEP Generation

Follow this and additional works at: http://dc.engconfintl.org/co2_summit2 Part of the <u>Environmental Engineering Commons</u>

Recommended Citation

Matt Usher, "AEP perspectives on 21st century power generation" in "CO2 Summit II: Technologies and Opportunities", Holly Krutka, Tri-State Generation & Transmission Association Inc. Frank Zhu, UOP/Honeywell Eds, ECI Symposium Series, (2016). http://dc.engconfintl.org/co2_summit2/5

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in CO2 Summit II: Technologies and Opportunities by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Perspectives on 21st Century Power Generation

Engineering Conferences International CO₂ Summit II Santa Ana Pueblo, New Mexico April 11, 2016

Matt Usher, P.E. Director – New Technology Development & Policy Support AEP Generation

Prudent Decisions – Positive Results

Diversifying our Fuel Portfolio

AEP Owned Generating Capacity by Fuel (actual & projected)

- 7,000+ MW of generation retiring by mid-2016
- Some planned coal to natural gas conversions and/or repower considerations
- No new fossil generation planned between now and 2020
- Utility Scale Solar PV under construction in Indiana (3-5 sites, 1-5MW each, 16MW total by 2017)

We power life's possibilities

Environmental/Regulatory Signposts & Milestones

We **power** life's possibilitiessm

Traditional Vs. Integrated Grid

Graphic by EPRI

- Centralized generation sources feed transmission/distribution network
- Electricity flows "one-way" from centralized generators to consumers
- Mature regulatory rate structure and market infrastructure

- Greater integration of entire electric system
- Distributed generation: supports localized demand along with central generation and supplies excess generation to grid ("two-way" flow)
- Energy efficiency and demand response program can augment and/or offset "steel-in-the-ground" generation capacity
- Requires innovative rate design and cost transparency at the retail level

We **power** life's possibilities[™]

The Role of Technology

21st Century Technologies and AEP Focus

- Distributed Generation & Renewables
- Virtual Power Plants and Microgrids
- Bulk Energy Storage
- Advanced Fossil Combustion / Thermal Energy Conversion Technologies (chemical looping, pressurized oxy-fuel)
- Advanced Cycles (e.g. Supercritical CO₂ direct & indirect-fired)
- IGCC & Post-Combustion CO2 Capture
- Advanced Nuclear

Value Proposition for Fossil Generation

- Diverse fuel options promote reliability, security and affordability both today & in the future.
- Reliable, dispatch-able, low-cost fossil-fueled generation is the backbone for intermittent renewable energy.

We **power** life's possibilitiessm

What is Needed?

- With properly focused R&D investment and policies that minimize financial and technical risk we can have options to build cost- & performance-competitive, technology to satisfy the demand for new, clean, reliable, & flexible fossil-fueled capacity.
- Right now we are just "kicking the can down the road" when it comes to clean fossil technology innovation and policy

Technology Pathways

- U.S. DOE 2015 Quadrennial Energy Review, 2016 & 2017 Budgets
- EPRI Long Term Research Imperatives
- Coal Utilization Research Council / EPRI Technology Roadmap

Challenges to Overcome

- We need technologies, equipment and components to support new generation paradigm and reduce <u>ALL</u> risk:
 - Increased efficiency and reduced emissions
 - Sustainable resource utilization (fuel, water, landfill)
 - ▲ Lower energy penalty
 - ▲ Scalability and practicality of use
 - 🔺 Footprint
 - Constructability
 - Process Complexity & Operability
 - ▲ Utilities' first priority is to generate electricity
 - Ability to Accommodate demanding duty cycles (etc. startups, shutdowns, fast-ramping ability)
- Favorable policies and <u>meaningful</u> incentives toward developing and demonstrating clean coal technology at scale
 - Consider <u>ALL</u> risks to CCUS deployment (financial, technical, legal, practical)
 - Set example for the global community that the U.S. is serious about clean fossil technology development for the future, even in the midst of low-cost, abundant natural gas.

We **power** life's possibilitiessm

AEP Engagement

- EPRI Program and supplemental project involvement to support transformational technology development
 - ▲ Supercritical CO₂ Power Cycles
 - \checkmark CO₂ selective membrane research
 - Advanced water research

A Ohio State University R&D Projects

- ▲ Coal direct and syngas chemical looping
- Prototype membrane development
- 🔸 Gas Technologies Institute
 - Proposed Oxy-PFBC Pilot Project (10MW)
- Funding Partner in DOE/Southern Co. National Carbon Capture Center

NCCC Overview

- Located in Wilsonville, Alabama
- Sponsored by the U.S. Department of Energy and its National Energy Technology Laboratory
- Partners include the Electric Power Research Institute and leaders in the power and coal industries

ELECTRIC POWER RESEARCH INSTIT

EPR

LOUD PEAK

U.S. DEPARTMENT OF

ENERGY

DUKE ENERGY

Luminant

NATIONAL CARBON CAPTURE CENTER

What NCCC Provides

- A cost-efficient test site for numerous technology developers
- Real industrial conditions with coalderived flue gas and syngas
- Capability for testing at multiple scales and for on-site scale-ups
- Expert staff for support of design, installation, and testing
- High quality data acquisition and gas/liquid sampling and analysis

State-of-the-Art Capabilities

Real-World Conditions

Operates with flue gas from commercially dispatched coal-fired unit with full environmental controls

High Availability

Two to three campaigns per year with continued, long-term testing and new testing during each campaign

- Infrastructure for Parallel Tests
 Multiple test bays for bench- and pilot scale developers' skids
- Support for Solvent Testing Fully integrated solvent units at benchand pilot-scales
- Flexibility for Natural Gas Conditions

Air dilution system for simulated natural gas-fired conditions when desired

NATIONAL CARBON CAPTURE CENTER

Thank You!

