Biomass conversion to produce value-added products from agricultural and forestry residues

Mohammad Hossain
ICFAR

Ian Scott
Agriculture and Agrifood Canada

Mark Sumarah
Agriculture and Agrifood Canada

Ken Conn
Agriculture and Agrifood Canada

Brian McGarvey
Agriculture and Agrifood Canada

See next page for additional authors

Follow this and additional works at: http://dc.engconfintl.org/bioenergy_iv

Recommended Citation

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in BioEnergy IV: Innovations in Biomass Conversion for Heat, Power, Fuels and Chemicals by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Authors
Mohammad Hossain, Ian Scott, Mark Sumarah, Ken Conn, Brian McGarvey, Franco Berruti, and Cedric Briens

This conference proceeding is available at ECI Digital Archives: http://dc.engconfintl.org/bioenergy_iv/6
Biomass conversion to produce value-added products from agricultural and forestry residues

Mohammad M. Hossain, Ian M. Scott, Mark Sumarah, Ken Conn, Brian D. McGarvey, Franco Berruti, Cedric Briens

Institute for Chemicals and Fuels from Alternative Resources
Western University

Canada
Introduction

High value products from pyrolysis of biomass

• Traditional bubbling fluidized bed reactor:
 – Liquid is mixture of many products
 – Better selectivity is required for high value products

→ Use a batch Mechanically Fluidized Reactor (MFR)
Batch Mechanically Fluidized Reactor
Batch Mechanically Fluidized Reactor
Batch Mechanically Fluidized Reactor

• No need for:
 – Inert fluidization medium (e.g. sand)
 – Fluidization gas

• Can be used for batch pyrolysis:
 – Liquid cuts can be collected for different temperature ranges
Objective

Demonstration of batch MFR to obtain model compounds from plant biomass

Spent coffee ground

Tobacco leaf

Caffeine

Nicotine
Results: Spent coffee ground

Yield of bio-oil

<table>
<thead>
<tr>
<th>Temperature cut, °C</th>
<th>15°C/min</th>
<th>5°C/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient-130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130-180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180-230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230-280</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15°C/min: Total bio-oil yield=50%

5°C/min: Total bio-oil yield=27%
Results: Spent coffee ground

Yield of caffeine = $\frac{\text{g caffeine in temperature cut}}{\text{g caffeine in biomass}}$

Spent coffee ground extract: 0.75 mg caffeine/g biomass

15°C/min: 96% recovered

5°C/min: 51% recovered
Results: Spent coffee ground

Purity of caffeine (mg caffeine/g bio-oil)

<table>
<thead>
<tr>
<th>Temperature cut, °C</th>
<th>Ambient-130</th>
<th>130-180</th>
<th>180-230</th>
<th>230-280</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg caffeine/g bio-oil</td>
<td>1.5</td>
<td>2.2</td>
<td>1.8</td>
<td>1.3</td>
</tr>
</tbody>
</table>

- 15°C/min
- 5°C/min
Results: Tobacco leaf

Yield of bio-oil

15°C/min:
Total bio-oil yield=41%
Results: Tobacco leaf

Yield of nicotine = g nicotine in temperature cut / g nicotine in biomass

15°C/min: 94% recovery of nicotine
Results: Tobacco leaf

Purity of nicotine (g nicotine/g bio-oil) for different temperature cuts
Conclusions

• A faster heating rate is better to recover thermally sensitive products such as caffeine

• The batch MFR can:
 – Recover most of the compound originally in the biomass
 – Provide a liquid with a high concentration of desired product
Future work

Two dimensional Mechanically Fluidized Reactor (MFR)

Combine batch MFR with fractional condensation
Acknowledgments

Dr. Ian M. Scott (AAFC)

Dr. Cedric Briens (ICFAR)

Dr. Franco Berruti (ICFAR)

Dr. Mark Sumarah (AAFC)

Dr. Brian D. McGarvey (AAFC)

Dr. Ken Conn (AAFC)

Labmates (ICFAR and AAFC)

AAFC (Agriculture and Agri-Food Canada, London, Ontario, Canada)
ICFAR (Institute for Chemicals and Fuels from Alternative Resources, Western University, London, Ontario, Canada)