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ABSTRACT 
The steady flow of viscous, incompressible, conducting 
fluid flow past a spherical solid core embedded in 
another spherical porous medium is considered.  The 
exact solution is obtained for the flow in the presence 
of transverse magnetic field.  The considered fluid flow 
is governed by Brinkman equation in porous region 
and by Stokes equation in the fluid region with 
additional Lorentz’s force due to applied magnetic 
field. The flows in the two regions are matched across 
the interface by assuming continuity of velocity and 
stress across the interface. Further, no-slip condition at 
the solid surface and uniform velocity far from the flow 
region are used.  The solutions are obtained by 
similarity transformation method in terms of modified 
Bessel’s functions. The expression for tangential shear 
stress, normal and tangential velocity is obtained. The 
results are demonstrated by graphs for various non-
dimensional parameters.  It is noticed that diffusion of 
the fluid into porous region is more as magnetic field 
strength is amplified.  This shows the suppression of 
the flow in the presence of magnetic field.  Also, the 
amplitude of the shearing stress intensifies with 
increase in the magnetic field strength and lessens 
with raise in porous parameter. 

KEYWORDS: Lorentz’s force, Uniform velocity, 
Magnetic field, Bessel function, shear stress. 

1.  INTRODUCTION   
     The study of hydrodynamic flows in presence of 
magnetic field has attracted many authors due to vast 
applications in astrophysical, geophysical and 
industrial fields. Many practical problems need a 
mechanism to control the motion of the fluid past solid 

bodies with Magnetohydrodynamics (MHD) effects. 
The study of magnetohydrodynamic flows of 
electrically conducting fluids in electric and magnetic 
fields is of considerable interest in modern 
metallurgical and metal working processes.  This has 
led to considerable interest in the study of boundary 
layer flows subjected to an externally applied magnetic 
field.    

          Anjali Devi and Raghavachar [1982] studied the 
horizontal flow of a vertically stratified, electrically 
conducting fluid past a non conducting sphere in the 
presence of uniform magnetic field for non-diffusive 
medium. Kyrlidis et al [1990] presented the study of 
conducting fluid past axi-symmetric bodies in the 
presence of magnetic field in the limit of small inertial 
and magnetic Reynolds numbers. Chandran et al 
[1996] have been analyzed the effect of magnetic field 
on the flow heat transfer past a continuously moving 
porous plate in a stationary fluid. The steady, viscous, 
electrically conducting fluid flow around a circular 
cylinder in the presence of magnetic field applied 
parallel to the main flow was investigated by Raghava 
Rao and Sekhar [2000]. Finite difference method was 
used to solve the non-linear Navier-Stokes equation. 
Jayalakshmamma et al [2011] presented a creeping 
flow past a composite sphere in presence of magnetic 
field. matching boundary conditions are applied at the 
interface of the fluid and porous media. Pal and 
Talukdar [2011] analyzed an investigation on the 
unsteady flow of a laminar two-dimensional oscillatory 
flow of an incompressible electrically conducting 
viscous fluid between two non-conducting parallel 
plane surfaces in the presence of suction / injection. 
Recently flow of conducting fluid on solid core 
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surrounded by porous cylindrical region in presence of 
transverse magnetic field is presented by 
Jayalakshmamma et al [2014]. 

The control of fluid flow during the relative motion of a 
 
 

body or fluid under the influence of magnetic field to is 
the main objective of this article. Hence, in this paper, 
the Stokes flow of a steady, incompressible, viscous, 
electrically conducting fluid flow past a solid sphere 
embedded in a spherical porous medium is presented 
in the presence of transverse magnetic field.  The 
analytical method is given to find an exact solution for 
the considered flow.  

 
2.   MATHEMATICAL FORMULATION 

The two-dimensional flow of a steady, 
incompressible, viscous, electrically conducting fluid 
past a stationary solid sphere has been considered in 
presence of transverse magnetic field. A fixed solid 
sphere of radius a  is surrounded by a spherical 
porous media of radius b   ba . Further, it is also 
assumed that the induced magnetic field is negligible 
in comparison with the applied magnetic field.  The 
domain has been divided into two regions namely, 
porous and fluid regions.  The governing equations 
which describe the flow of a conducting fluid in fluid 
region can be written as:  
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
q ,                                                                    (1) 
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where  1111 ,, wvuq 


 is the velocity in the fluid region, 

 is the viscosity of the fluid, h  is the magnetic 

permeability, e  is the electrical conductivity, which is 
very small so that the induced magnetic field is 

negligible, 

H  is the uniform magnetic field and 1p  is 

the hydrostatic pressure of the fluid region. Here 
equation (2) is said to be modified Stokes equation as 
it consist of Lorentz force due to applied Magnetic 
field, along with the viscous term on the right hand side 
of the equation. 

     The flow in the porous region bra   is governed 
by the modified Brinkman equation along with equation 
of continuity by: 
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where,  2222 ,, wvuq 


 is the velocity in the porous 

region,   is the Brinkman viscosity, 2p  the hydrostatic 

pressure of the porous region and k  the permeability 
of the porous region.  
     Spherical co-ordinate system  ,,r  with the origin 
at the center of the sphere has been used and the axis 

0  is chosen along the direction of the uniform 
velocity u far from the fluid region. Also due to axi-

symmetry, we have 0




. The flow characteristics of 

the problem are described by equations (1) to (4) can 
be analyzed in terms of non-dimensional parameters 
defined as: 
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where 0H  is the applied constant magnetic field. 
 
     Using the dimensionless variables from equation 
(5), the governing equations (1) and (2), for spherical 
polar co-ordinate system can be written as  
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where  


 2
0

22 HaM eh  is the Hartmann number. 

 
   Similarly, using the transformation from equation (5), 
the equations (3) and (4) are non-dimensionalised for 
the porous region, and the corresponding equations in 
spherical polar co-ordinate system can be written as: 
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where 222 MS   ,   in which  
k

a
  is the porous 

parameter. 

     Since flow is axi-symmetric, the stream function 
  ,ri  (where 2,1i corresponds to fluid and porous 

regions respectively) is introduced, such that the 
equation of continuity is satisfied in spherical polar co-
ordinate system for both fluid and porous regions 
respectively. It is defined as follows:  
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     By eliminating the pressure term from equations 
(7), and (8) of fluid region and equations (10), and (11) 
of porous region by cross differentiation a fourth order 
linear partial differential equation in terms of stream 
function is obtained as:  
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operator in spherical co-ordinate system. 

     To determine the flow field it is necessary to apply 
the boundary conditions. The different types of 
interfacial boundary conditions have been postulated 
to describe flow characteristics at the boundary 
between a porous and fluid medium or between a 
porous medium and solid surface. The physically 
realistic and mathematically consistent boundary 
conditions, which describe the present problem, are no 
slip condition at the solid surface, continuity of velocity 
components, continuity of normal and tangential stress 
components at the interface of the porous and fluid 
regions and the velocity becomes uniform far away 
from the fluid region.  The no slip condition at the 
surface of the solid surface for the present problem 
takes the form:  

   20,0,2 au ,                                          (15) 

   20,0,2 av .                                           (16) 

   The interfacial conditions, continuity of normal and 
tangential velocity components, continuity of normal 
and tangential stress components at the interface of 
the porous and fluid region are given by: 

     20,,, 12  bubu ,                                   (17)

     20,,, 12  bvbv ,                                  (18) 

        20,,, 12  bb rr ,                          (19)

       20,,, 12  bb rrrr ,                           (20) 

where  1 r  and  1rr  represents the dimensionless 

tangential and normal components of stress tensors in 
the porous region and is given by: 
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Further,  2 r  and  2rr  stands for dimensionless 

tangential and normal components stress tensors in 
the fluid region, and are also defined in the same way 
as equations (21) and (22).The continuity of the normal 
stress at the interface of the two regions in  equation 
(20), shows the continuity of pressure across the 
interface, since it was assumed that the viscosity of the 
fluid is equal to the Brinkman viscosity   .  
Therefore, equation (20) reduces to: 

     20,,, 12  bpbp .                                 (23) 

Further, the stream function in the fluid region far away 
from the boundary is given by: 

  

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

  rb

r
rr ,sin1

2
1, 22
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     From equation (12) and equation (24), the 
boundary conditions for the velocity components far 
from the fluid region are: 

 rvu as'sin~,cos~ 11                               (25) 

Hence the boundary condition far away from the fluid 
region, equation (24) reduces in terms of stream 
function as: 
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2
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3.   METHOD OF SOLUTION 
     The boundary condition from equation (26) 
suggests the following similarity solution to equation 
(13) and (14) as:  
      rbrfr ,sin, 2

11  ,                             (27) 

    brarfr  ,sin, 2
22  .                              (28) 

Substituting equation (27) in (13) and equation 
(28) in (14), the fourth order partial differential equation 
in terms of stream functions   ,1 r  and   ,2 r  
reduces to fourth order ordinary differential equation in 
 rf1  and  rf2 respectively, and are in the following 

form: 
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     The corresponding boundary conditions in terms of 
 rf1  and  rf2  from equations (15) to (20) and from 

equation (26) are as follows. No-slip condition at the 
surface of the solid sphere is given by: 

   02 af ,                                                                 (31) 

  02  af .                                                                 (32) 

     The matching condition at the interface of the 
porous and fluid region takes the form: 

   bfbf 12  ,                                                      (33) 

   bfbf 
12 ,                                                           (34) 
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12 ,                                                          (35)

     bfbfbf ''''''
12

2
2  .                                          (36) 

     Further, the uniform velocity far away from the 
boundary, from equation (26) reduces to: 

 
2

~
2

1
rrf     as  r .                                           (37) 

     The solution for the equations (29) and (30) is 
obtained analytically by similarity solution method and 
obtained solution is  

            rbrMKrDrMIrCrB
r
Arf ,231231
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1
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(39) 
     For the flow in fluid region as r  the

  rMI 23 .  Therefore, the solution for fluid region 

equation (38) is valid if and only if  01 C .  Also from 
the boundary condition, for far away from the fluid 
region from equation (37) we get 211 B . Hence 
equation (46) reduces to: 

     rbrMKrDr
r
Arf ,

2 231

2

2
1

1 ,                (40) 

Also, equation (39) for bra   can be written as: 
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     Here the arbitrary constants 22211 ,,,, CBADA  and 

2D  are determined using the boundary conditions 
mentioned above from equations (31) to (37).  
 
4.  RESULTS AND DISCUSSION 
     The flow of steady incompressible viscous and 
electrically conducting fluid past a solid sphere of 
radius a  embedded in a porous sphere of radius b  
 ba , has been investigated in presence of  an 
uniform magnetic field, applied in the transverse 
direction of the fluid motion. The  modified Stokes and 
Brinkman equation are used to describe the flow in 
fluid and porous regions respectively. The analytical 
solution is obtained by similarity solution method. The 
continuity of velocity, tangential and  normal stress are 
used as the interface boundary conditions between 
fluid and porous  regions. The no-slip condition at the 
surface of the solid sphere and uniform velocity away 
from the porous sphere are considered. The variation 
of the stream functions in the boundary layer for 
different values of the dimensionless parameters are 
presented. Further, the variation of amplitude of the 
shearing stress is discussed for various porous 
parameter and Hartmann number. 
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     First, the porous parameter is fixed at a value 5  
and the Hartman number M is varied. For 1M , it is 
noticed that due to less permeability the amount of 
fluid flow in the porous region is less and streamlines 
are far from the solid sphere as observed in Fig. 1(a). 
For the same value of 5 , as the magnetic field 
strength is increased to, it is observed that the amount 
of fluid penetrating into the porous region is more and 
as a result streamlines are closer and denser around 
the solid core, as illustrated in  Figs. 1 (b), (c) and (d). 
 

 

            

           
 

Fig.1  Streamlines for different values of M  with 5  

           (a) 1M   (b) 2M    c) 5M        (d) 10M  
 
 
    Figures 2(a)-(d) represents the streamlines for 
different values of porous parameter,   by fixing the 
Hartmann number M . The flow behaviour is similar to 
that of creeping flow of viscous fluid. This can be 
attributed to a small Hartmann number chosen in the 
study. Further, as the porous parameter increses, the 
fluid flow in the porous and fluid region is supressed 
due to the drag force caused by low permeability. 
These results are qualitatively consistent with that of  
Maslyiah et al [1987], where the effect of porous 
parameter was discussed on fluid flow over a solid 
core with porous shell. 
 
For the practical importance, the expression for the 
dimensionless tangential shear stress  1 r , at any 

point on the surface of the solid sphere (i.e., r = 1) is 
obtained.  

 

             
 

            
  
Fig. 2 Streamlines for different values of  with 1M  
           (a) 1     (b) 5     (c) 10        (d) 15  
 
  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 3(a) Variation of shear stress for 50  with          

15,10,5M  (b) Variation of shear stress for 1M  

and 15,10,5  
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The variation of tangential shear stress  1 r  on the 

surface of the solid sphere for variation of  is studied 
for different values of Hartmann numbers and porous 
parameters and depicted in Figs. 3. (a) and (b). It is 
observed that the shear stress is periodic in nature, 
and is also seen at the front and rear points of the 
sphere for 0  and   . However, the shearing 
stress vanishes and attains its maximum value for 

2
  . Further, it is noticed that the amplitude of the 

shearing stress amplifies with increase in the magnetic 
field strength and reduces with increase in porous 
parameter. 
 
5.  CONCLUSIONS 
 
     The analytical solution of steady flow of an 
incompressible viscous and electrically conducting 
fluid past a solid sphere placed in a spherical porous 
medium, in the presence of transverse magnetic field.  
The influence of Hartman number and porous 
parameter are discussed on the streamline patterns 
and shearing stress.    
     The increase in magnetic field strength for a fixed 
or negligible porous parameter, the meandering of 
streamlines near the surface of the solid sphere is 
observed. But, for fixed or negligible Hartman number, 
the streamlines are moved away from the surface with 
an increase in porous parameter. 
    The amplitude of the shearing stress intensifies with 
increase in the magnetic field strength and lessens 
with raise in porous parameter. 
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