Engineering Conferences International ECI Digital Archives

CO2 Summit II: Technologies and Opportunities

Proceedings

Spring 4-11-2016

CCS cost trends and outlook

Edward Rubin Carnegie Mellon University

Follow this and additional works at: http://dc.engconfintl.org/co2_summit2 Part of the Environmental Engineering Commons

Recommended Citation

Edward Rubin, "CCS cost trends and outlook" in "CO2 Summit II: Technologies and Opportunities", Holly Krutka, Tri-State Generation & Transmission Association Inc. Frank Zhu, UOP/Honeywell Eds, ECI Symposium Series, (2016). http://dc.engconfintl.org/co2_summit2/7

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in CO2 Summit II: Technologies and Opportunities by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

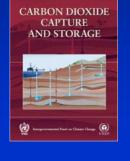
CCS Cost Trends and Outlook

Edward S. Rubin

Department of Engineering and Public Policy Department of Mechanical Engineering Carnegie Mellon University Pittsburgh, Pennsylvania

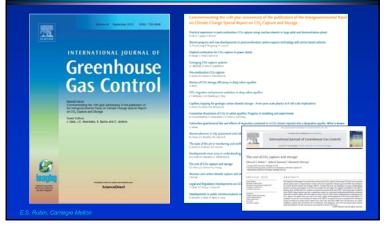
Invited Presentation to

CO₂ Summit II: Technologies and Opportunities Engineering Conferences International Santa Ana Pueblo, New Mexico


April 11, 2016

Outline of Talk

- Changes in CCS costs over past ten years
- The outlook for future costs
- What it takes to achieve cost reductions


Motivation: The IPCC Special Report on CCS

- Commissioned by IPCC in 2003; completed in December 2005
- First comprehensive look at CCS as a climate change mitigation option (9 chapters; ~100 authors)
- Included a detailed review of cost estimates for CO₂ capture, transport and storage options

E.S. Rubin, Carnegie Mellon

Special Issue of *IJGGC*: 10 Years After the SRCCS

1

SRCCS Costs for CO₂ Capture

(excludes transport and storage costs; all costs in constant 2002 USD)

	New NGCC Plant		New SCPC Plant		New IGCC Plant	
Performance and Cost Measures	Range	Rep. Value	Range	Rep. Value	Range	Rep. Value
Emission rate w/o capture (kg CO ₂ /MWh)	344 - 379	367	736 - 811	762	682 - 846	773
Emission rate with capture (kg CO ₂ /MWh)	40 - 66	52	92 - 145	112	65 - 152	108
Percent CO ₂ reduction per kWh (%)	83 - 88	86	81 - 88	85	81 - 91	86
Plant efficiency w/ capture, LHV basis (%)	47 - 50	48	30 - 35	33	31 - 40	35
Capture energy reqm't. (% more input/MWh)	11 - 22	16	24 - 40	31	14 - 25	19
Total capital reqm't. w/o capture (US\$/kW)	515 - 724	568	1161 - 1486	1286	1169 - 1565	1326
Total capital reqm't. w/ capture (US\$/kW)	909 - 1261	998	1894 - 2578	2096	1414 - 2270	1825
Percent increase in capital cost w/ capture	64 - 100	76	44 - 74	63	19 - 66	37
COE w/o capture (US\$/MWh)	31 - 50	37	43 - 52	46	41 - 61	47
COE w/ capture only (US\$/MWh)	43 - 72	54	62 - 86	73	54 - 79	62
Increase in COE w/ capture (US\$/MWh)	12 - 24	17	18 - 34	27	9-22	16
Percent increase in COE w/ capture (%)	37 - 69	46	42 - 66	57	20 - 55	33
Cost of CO ₂ captured (US\$/t CO ₂)	33 - 57	44	23 - 35	29	11 - 32	20
Cost of CO ₂ avoided (US\$/t CO ₂)	37 - 74	53	29 - 51	41	13 - 37	23

SRCCS Costs for New Power Plants Using Current Technology

Power Plant System	Natural Gas Combined Cycle Plant	Supercritical Pulverized Coal Plant	Integrated Gasification Combined Cycle Plant		
Levelized Cost of Electricity	(constant 2002 U	IS\$/kWh)			
Reference Plant Cost (without capture)	0.03–0.05	0.04–0.05	0.04–0.06		
Added cost of CCS with geological storage	0.01-0.03	0.02-0.05	0.01-0.03		
Added cost of CCS with EOR storage	0.01-0.02	0.01-0.03	0.00-0.01		
Cost of CO ₂ Avoided (constant 2002 US\$/tonne)					
Same plant with CCS (geological storage)	40–90	30–70	15–55		
Same plant with CCS (EOR storage)	20–70	10–45	(-5)–30		
			Source: IPCC. 200:		

2015 Cost Update

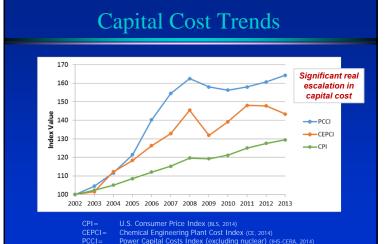
(Rubin, Davison and Herzog, IJGGC)

- Compiled data from recent CCS cost studies in the U.S. and Europe for new power plants with:
 - Post-combustion CO₂ capture (SCPC and NGCC)
 - Pre-combustion CO₂ capture (IGCC)
 - Oxy-combustion CO₂ capture (SCPC)
- Adjusted all costs to constant 2013 US dollars
- Adjusted SRCCS costs from 2002 to 2013 USD using:
 - Capital /O&M cost escalation factors +
 - Fuel cost escalation factors (for COE)
- Compared recent cost estimates to SRCCS values

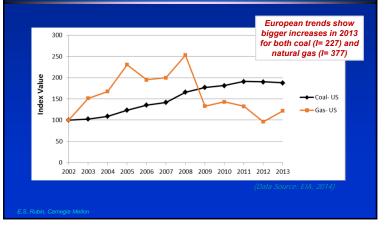
E.S. Rubin, Carnegie Mellon

Recent Cost Studies Reviewed

- IEAGHG, 2014
- NETL, 2014
- EPRI, 2013
- NETL, 2013a, b
- ES&T, 2012
- IEAGHG, 2012


- Léandri et al., 2011
- GCCSI, 2011
 - NETL, 2011a, b, c
 - ZEP, 2011a, b, c
 - NETL, 2010
- 16 studies, each with multiple cases

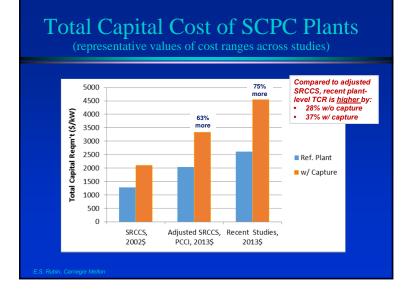
S. Rubin, Carnegie Mello

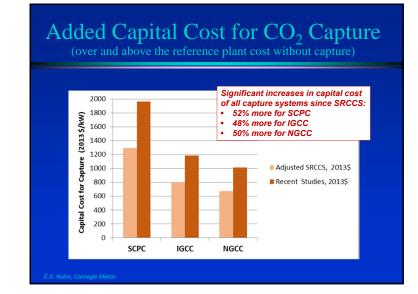

Differences in Key Assumptions

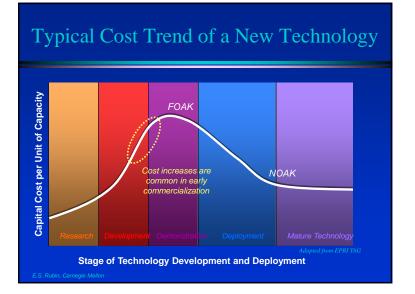
- Basic power plant design parameters such as net plant efficiency, CO₂ emission rates, and CO₂ capture rates have not changed appreciably since the SRCCS
- Some assumptions affecting CCS costs have changed:
 - Average power plant sizes without CCS are about 10% to 25% larger than in SRCCS studies
 - Assumed capacity factors are higher (by 10 %-pts for PC, plants, 2 %-pts for IGCC plants, and 8 %-pts for NGCC)
 - Fixed charge factor are lower (by about 10% for NGCC, 20% for IGCC and 30% for SCPC)
 - Parameter values often differ for plants with and w/o CCS
 - Increased focus on potential for utilization via CO₂–EOR

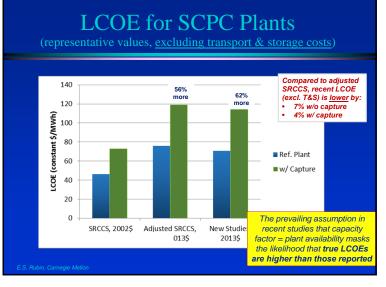
E.S. Rubin, Carnegie Mello

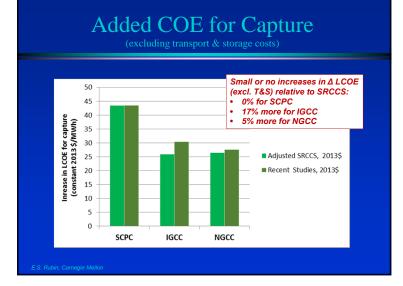
Fuel Cost Trends for U.S. Power Plants




Capture System Costs Then and Now: New SCPC Plants w/ Post-Combustion Capture


Performance and Cost Measures for New SCPC Plants w/ Bituminous Coal	-	Current Values Range Rep.		Adjusted SRCCS Values Range Rep.		S Values <i>Rep</i> .	Change in Rep. Value (Current –Adjusted SRCCS)	
New Ser C Flants w/ Bitunnious Coar	Low	High	Value	Low	High	Value	Δ Value	Δ%
Plant Performance Measures								
SCPC reference plant net power output (MW)	550	1030	742	462	758	587	155	26
Emission rate w/o capture (kg CO2/MWh)	0.746	0.840	0.788	0.736	0.811	0.762	0.03	3
Emission rate with capture (kg CO2/MWh)	0.092	0.120	0.104	0.092	0.145	0.112	-0.01	-7
Percent CO2 reduction per MWh (%)	86	88	87	81	88	85	2	
Total CO2 captured or stored (Mt/yr)	3.8	5.6	4.6	1.8	4.2	2.9	1.7	57
Plant efficiency w/o capture, HHV basis (%)	39.0	44.4	41.4	39.3	43.0	41.6	-0.2	-1
Plant efficiency w/ capture, HHV basis (%)	27.2	36.5	31.6	28.9	34.0	31.8	-0.2	-1
Capture energy reqm't. (% more input/MWh)	21	44	32	24	40	31	1.1	3
Plant Cost Measures								
Total capital reqm't. w/o capture (USD/kW)	2313	2990	2618	1862	2441	2040	578	28
Total capital reqm't. with capture (USD/kW)	4091	5252	4580	2788	4236	3333	1247	37
Percent increase in capital cost w/ capture (%)	58	91	75	44	73	63	13	
LCOE w/o capture (USD/MWh)	61	79	70	64	87	76	-6	-8
LCOE with capture only (USD/MWh)	94	130	113	93	144	119	-6	-5
Increase in LCOE, capture only (USD/MWh)	30	51	43	28	57	43	0	-1
Percent increase in LCOE w/ capture only (%)	46	69	62	42	65	56	5	
Cost of CO2 captured (USD/t CO2)	36	53	46	33	58	48	-3	-6
Cost of CO2 avoided, excl. T&S (USD/t CO2)	45	70	63	44	86	67	-4	-6


E.S. Rubin, Carnegie I


Source: Rubin, Davison, Herzog, 2015)

Transport and Storage Costs (relative to adjusted SRCCS)

Onshore pipelines (250 km):

• Recent U.S. costs are similar to SRCCS; European costs are significantly higher (esp. for 3 MtCO₂/yr)

Geological storage (onshore):

- Low end of cost range is substantially higher; high end of cost range is slightly higher
- EOR credits are substantially higher (\sim \$15–40/tCO₂)

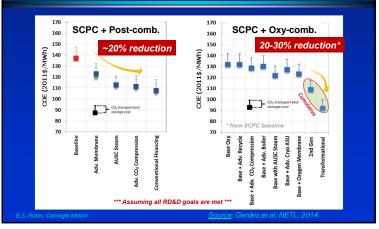
Total Plant LCOE (2013 \$/MWh)

for CO₂ capture, transport and geological storage

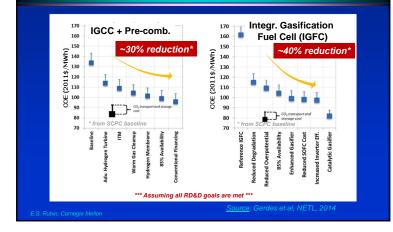
Case	NGCC with post- combustion capture	SCPC with post- combustion capture	IGCC with pre- combustion capture
Without EOR			
SRCCS (adjusted)	56 – 110	94 - 163	92 – 150
Recent Studies	63 – 122	95 - 150	112 – 148
With EOR credits			
SRCCS (adjusted)	48 – 100	76 – 139	77 – 128
Recent Studies	48 – 112	61 – 121	83 – 123

Mitigation costs (\$/tCO₂ avoided) also are roughly similar to adjusted SRCCS costs

E.S. Rubin, Carnegie Mellon


Other Conclusions from the Study

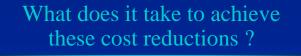
- For new SCPC plants oxy-combustion capture shows potential to be cost competitive with post-combustion capture
- Based on current cost estimates for the four CCS pathways analyzed, there are no obvious winners or losers


E.S. Rubin, Carnegie Mellon

Potential Cost Reductions from "Bottom-Up" Analyses (1)

Potential Cost Reductions from "Bottom-Up" Analyses (2)

Projected Cost Reductions from a "Top-Down" Analysis


(Based on energy-economic modeling with technology-specific learning curves)

(Percent cost reduction, 2001-2050)*

	er Plant	Power P Syste	Reduction in Cost of Electricity (\$/MWh)	Reduction in Mitigation Cost (\$/tCO ₂ avoided)
NGCC – CCS 12% – 40% 13% – 60%	c –ccs	SCPC -C	14% – 44%	19% – 62%
	c –ccs	NGCC -C	12% – 40%	13% – 60%
IGCC –CCS 22% – 52% 19% – 58%	ccs	IGCC –C	22% – 52%	19% – 58%

na mgir giobal calborr price econancer

E.S. Rubin, Carnegie Mello

- Sustained R&D
- Markets for CCS technology (created by policy carrots <u>and sticks</u>)
- Learning from experience

-- Stay tuned for updates in these areas --

E.S. Rubin, Carnegie Mello

Additional Information

Total Cost for CCS (in constant 2013 USD)

(based on recent studies of current technology for new power plants)

Cost and Performance Parameters	NGCC with post- combustion capture	SCPC with post- combustion capture	SCPC with oxy- combustion capture	IGCC with pre- combustion capture		
Reference Plant without CCS: Levelized cost of electricity (USD/MWh)	42 - 83	61 – 79	56 - 68*	82 - 99		
Power plants with CCS						
Increased fuel requirement per net MWh (%)	13 - 18	21 – 44	24 - 29	20 - 35		
CO ₂ captured (kg/MWh)	360 - 390	830 - 1080	830 - 1040	840 - 940		
CO ₂ avoided (kg/MWh)	310 - 330	650 - 720	760 - 830	630 - 700		
% CO ₂ avoided	88 - 89	86 - 88	88 - 97	82 - 88		
Power plant with capture, transport and geological storage						
Levelized cost of electricity (USD/MWh)	63 - 122	95 - 150	92 - 141	112 - 148		
Electricity cost increase for CCS (USD/MWh)	19 - 47	31 - 71	36 - 75	25 - 53		
% increase	28 - 72	48 - 98	61 - 114	26 - 62		
Power plant with capture, transport and geological storage with enhanced oil recovery credits						
Levelized cost of electricity (USD/MWh)	48 - 112	61 - 121	52 - 113	83 - 123		
Electricity cost increase for CCS (USD/MWh)	3 - 37	(3) - 42	(4) - 47	(11) – 29		
% increase	7 - 56	(5) - 57	(8) - 72	(11) - 33		

E.S. Rubin, Carnegie Mello

S. Rubin, Carnegie Mellon

Cost of CO_2 Avoided (1)

Mitigation costs in \$/tCO₂ avoided (constant 2013 USD) for new power plants with capture and <u>geologic storage</u>

Capture Plant*	This Study	Adjusted SRCCS	Difference, low end	Difference, high end
NGCC	59 - 143	64 - 136	-5	7
SCPC	46 - 99	45 - 114	1	-15
IGCC	38 - 84	25 - 85	13	-1
IGCC w/SCPC reference plant	53 - 137	n/a		
OXY	47 - 97	n/a		

* The no-capture reference plant is assumed to be the same type plant as the capture plant, except as noted.

E.S. Rubin, Carnegie Mello

Cost of CO_2 Avoided (2)

Mitigation costs in \$/tCO₂ avoided (constant 2013 USD) for new power plants with capture and <u>EOR storage</u>

Capture Plant*	This Study	Adjusted SRCCS	Difference, low end	Difference, high end
NGCC	10 - 112	38 - 107	-28	5
SCPC	(5) - 58	17 - 77	-22	-19
IGCC	(16) - 46	(1) - 55	-15	-9
IGCC w/SCPC reference plant	3 - 102	n/a		
OXY	(6) - 63	n/a		

The no-capture reference plant is assumed to be the same type plant as the capture plant, except as noted.

E.S. Rubin, Carnegie Mellon