Adhesives from biomass pyrolysis

Dongbing Li
ICFAR – Western University, fberruti@uwo.ca

Franco Berruti
ICFAR – Western University

Cedric Briens
ICFAR – Western University

Follow this and additional works at: http://dc.engconfintl.org/gpe2016
Part of the Chemical Engineering Commons

Recommended Citation

This Abstract is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in 5th International Congress on Green Process Engineering (GPE 2016) by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Adhesives from Biomass Pyrolysis

Dongbing Li, Franco Berruti, Cedric Briens
Email: dli86@uwo.ca
Outline

- Introduction

- Preparation of pyrolysis bio-oils
 - Fractional condensation
 - Autothermal operation

- Bio-phenol resins for wood adhesives

- Conclusions
Introduction

➢ Bio-phenol resins for wood adhesives:
 • Biomass fast pyrolysis can produce phenolic chemicals in the form of “Bio-Oil”
 • PF resins are widely used for wood adhesives
 • Prior studies with whole bio-oil or a solvent-extracted oil fraction provide 20-50% phenol substitution

➢ Research objective
 • Develop an inexpensive pyrolysis process to produce better bio-oil for phenol substitution in PF resins
Preparation of Pyrolysis Bio-oils

Problem: Bio-oil contains ~35% water, and volatile acids

Solution: Fractional Condensation of Pyrolytic Vapors

Results:
- Two fractions: dry bio-oil (<1%), aqueous condensate
- Dry bio-oil HHV: 20 → 30+ MJ/kg (ethanol: 29.7)
- Recovery of organic chemicals: > 90%
- Recovery of total bio-oil energy: > 90%
Preparation of Pyrolysis Bio-oils

Problem: External heating required (endothermic process)

Solution: Autothermal Operation from partial oxidation

Results:
• No need for external heating → simplified reactor design, less expensive process
• Better dry bio-oil quality:
 - reduced acidity
 - reduced amount of heavy sugars and pyrolytic lignin
 - enriched concentration of simple phenolics
Dry Bio-oil for Bio-Phenol Applications

- Dry bio-oil yield (%)
 - Birch Wood
 - Birch Bark
 - Hydrolysis Lignin
 - Kraft Lignin

- Total phenolics concentration (g GAE/g dry bio-oil)
 - Birch Wood
 - Birch Bark
 - Hydrolysis Lignin
 - Kraft Lignin

25%
70%
40%
Problem: High-value application for dry bio-oil?

Preparation of Bio-phenol Resins for Wood Adhesives
Adhesive Characterization

- Tests → Bio-phenol resins can be made in existing plants with no reduction in production capacity

- Regulatory requirements for plywood panels are met:
 - Mechanical shear strength
 (dry test, and boil test – 28 h cycle)
 - Formaldehyde emissions
Meeting ISO/JIS Specifications: Mechanical Strength

Biomass Type / Autothermal (?) / Mechanical Test

Phenol substitution ratio (%)

- 80
- 65
- 50
- 40
- 30
- 20
- 10
- 0

Mechanical shear strength

- 2.5 MPa (CSA, dry test)
- 1.0 MPa (ISO/JIS)
- 0 MPa

Results:

- Not binding
- Fail

Dry No Birch wood
Dry Autothermal
Boil No Birch bark
Boil Autothermal
Dry No Hydrolysis lignin
Dry Autothermal Kraft lignin

Values:

- 1.3
- 1.7
- 1.4
- 1.3
- 1.2
- 1.3
- 1.8
- 1.6
- 1.4
- 1.6
- 1.9
- 2.0
- 1.5
- 1.6
- 1.5
- 1.4
- 1.7
- 1.5
- 1.9
- 1.4
- 1.7
- 1.7
- 1.9
- 1.8
- 2.0
- 2.5
Meeting ISO/JIS Specifications: Formaldehyde Emission

<table>
<thead>
<tr>
<th>Phenol substitution ratio (%)</th>
<th>80</th>
<th>70</th>
<th>65</th>
<th>60</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birch wood</td>
<td>Not binding</td>
<td>Not binding</td>
<td>1.21</td>
<td>1.14</td>
<td>0.42</td>
</tr>
<tr>
<td>Birch bark</td>
<td>No</td>
<td>Autothermal</td>
<td>0.46</td>
<td>0.29</td>
<td>0.38</td>
</tr>
<tr>
<td>Hydrolysis lignin</td>
<td>No</td>
<td>Autothermal</td>
<td>0.22</td>
<td>0.43</td>
<td>0.17</td>
</tr>
<tr>
<td>Kraft lignin</td>
<td>Autothermal</td>
<td>Autothermal</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Formaldehyde emission

- 0.0 mg/L (E0, indoor use)
- 0.5 mg/L (E1, indoor use)
- 1.5 mg/L
Low-Cost Waste Biomass: Digestate?

- Digestate → Low cost, high lignin content, and high ash
- Dry bio-oil (500 °C): Two types of digestates
 - Total phenolics: > birch bark
 - Viscosity (MW): > birch bark
 - Phenol substitution: 50%, < birch bark (65%)
- Future work:
 - For better bio-oil quality and phenol substitution ratio:
 - Higher pyrolysis temperature
 - Longer vapor residence time
Conclusions

High bio-phenol substitution ratio was achieved:
• 50 wt. % - 80 wt. % phenol substituted by pyrolysis bio-oil
• Fractional condensation and autothermal operation are beneficial

Bio-PF wood adhesive is attractive:
• Cost savings: expensive, fossil-sourced phenol
 → inexpensive, sustainable bio-oil
 (cost < 50% of phenol from benzene)
Acknowledgements

- ICFAR colleagues
- Financial support