Influence of γ-irradiated biopharmaceutical films

Samuel Dorey
Sartorius Stedim FMT S.A.S, Z.I. Les Paluds, France, samuel.dorey@sartorius.com

Fanny Gaston
Sartorius Stedim FMT S.A.S, Z.I. Les Paluds, France

Magali Barbaroux,
Sartorius Stedim FMT S.A.S, Z.I. Les Paluds, France

Nathalie Dupuy
Aix Marseille Université, CNRS, IRD, Avignon Université, France

Sylvain R.A. Marque
Aix Marseille Université, CNRS, France ; orozhtsov Novosibirsk Institute of organic chemistry Office 312, Russia

Follow this and additional works at: http://dc.engconfintl.org/biopoly_ii
Part of the Materials Science and Engineering Commons

Recommended Citation

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Single-use Technologies II: Bridging Polymer Science to Biotechnology Applications by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Influence of γ-irradiation on biopharmaceutical films

Sartorius: Dr S. Dorey, Dr F. Gaston | ECI - May 2017
Aix-Marseille University: Prof. N. Dupuy, Prof. S. Marque
Contents

1. Purpose and Scope
2. Materials & Methods
3. Approach and Results
4. Conclusion and Perspectives
Contents

1 Purpose and Scope

2 Materials & Methods

3 Approach and Results

4 Conclusion and Perspectives
Purpose and scope

- Sterilization of Single use plastic bags made of multilayer films with PE, EVA, EVOH, etc. is achieved by γ irradiation

- Sterilization purpose: to kill micro-organisms

- 25-40|45 kGy: common dose range

- γ rays generated with a 60Co source

- Norms (ISO 11137, ISO 11737) only deal with microbiological aspect
Purpose and scope

Unexpected phenomena could be observed even with in-purpose selected “γ-irradiatable” materials:

- Material color change
- Peptide oxidation
- pH shift
- Cell culture inhibition

Gamma irradiation necessarily leads to the creation of radicals, small molecules, and unsaturations in alkane chains

- are there any other impacts?
- if yes, what is the extent?
Contents

1. Purpose and Scope
2. Materials & Methods
3. Approach and Results
4. Conclusion and Perspectives
Materials and methods

- Multilayer PE based film (S80)
- 3 lots investigated
- Irradiated with a constant dose rate
- Several γ-doses investigated: 0, 30, 50, 115, 270 kGy
- Monitoring of the effects overtime

![Diagram of multilayer PE based film](image)

- EVOH (polyethylene vinyl alcohol)
- PE (polyethylene)
Materials and methods

Emphasis of chemical modifications
- ATR – FTIR
- Raman spectroscopy

Emphasis of radicals
- ESR Spectroscopy (electron spin resonance)

Emphasis of extreme surface modifications
- XPS (X-Ray Photoelectron Spectroscopy)

Structural modifications
- Tensile strength
- Gas permeability : WVTR

Chemometrics
- The data set size is huge → chemometric methods used (data in matrix)
 - PCA (Principal Component Analysis), AComDim (ANOVA in Common Dimension), SIMPLISMA (SIMPLE-to-use Interactive Self-modeling Mixture Analysis)
Discoloration

- Yellowing – Photography of S80 films after different irradiation doses

Yellowing of films increases with irradiation doses
Emphasis of radicals

- Problematics: coloration | oxidation of protein | acid release
- Hypothesis: oxidation due to the presence of hydroperoxydes (ROOH) and thus via radicals

- No ESR signal in non sterile films
- ESR signal in films irradiated at 30-50-115-270 kGy

- S80 film irradiated
- PE film irradiated
- EVOH films irradiated
Emphasis of radicals

Radical detection by electron spin resonance (ESR) in S80 film:

- Same signal for all irradiation doses
- Radicals in S80 should be:

 \[
 \begin{align*}
 \cdot C-OH \\
 CH_2
 \end{align*}
 \]

 \[
 \begin{align*}
 \cdot \cdot \cdot \\
 CH_2
 \end{align*}
 \]

 \[
 \begin{align*}
 \cdot \cdot \cdot \\
 CH_2
 \end{align*}
 \]

 \[
 \begin{align*}
 \cdot \cdot \cdot \\
 CH_2
 \end{align*}
 \]

- Stable radical: persistant over ~10-13 weeks
- Migration weakly probable
- This radical cannot be responsible of protein oxidation
- Protein oxidation is certainly due to hydroperoxydes issued from non observable radicals R^*

Degradation of γ-irradiated polyethylene-ethylene vinyl alcohol-polyethylene multilayer films: an ESR study
122 (2015) 169-179
Modification on film surface

- The presence of radicals leads necessarily to structural and chemical changes of the film surface
The presence of radicals leads necessarily to structural and chemical changes of the film surface.

- ATR-FTIR spectra of non-sterile PE (i.e. 0 kGy) and γ-irradiated PE

- Global PCA → no evidence of impact of irradiation and ageing

- Unchanged PE peak positions | intensity

- The PE is not impacted globally

- Need to scrutinize zone by zone
Modification on film surface

- Chemometrics (PCA) outputs on the 1760-1680 cm\(^{-1}\) range:
 - Overlapping 0/30/50 kGy = minor impact below 115 kGy
 - Acids and unsaturated products ↝ with the gamma dose
Modification on film surface

- One possible mechanism

\[
\begin{align*}
\text{PE} + \text{PE} & \xrightarrow{\gamma} \text{PE} \cdot \cdot \cdot \text{PE} \\
\text{PE} \cdot \cdot \cdot \text{PE} & \xrightarrow{O_2} \text{PE} \cdot \cdot \cdot \text{PE} \cdot \cdot \cdot \text{PE} \\
\text{PE} \cdot \cdot \cdot \text{PE} \cdot \cdot \cdot \text{PE} & \xrightarrow{''H''} \text{PE} \cdot \cdot \cdot \text{PE} \cdot \cdot \cdot \text{PE} \\
\text{PE} \cdot \cdot \cdot \text{PE} \cdot \cdot \cdot \text{PE} & \xrightarrow{''H''} \text{PE} \cdot \cdot \cdot \text{PE} \cdot \cdot \cdot \text{PE}
\end{align*}
\]

- Short/long

pHmetry
IC
GC-MS
Modification on film surface

ATR-FTIR analysis and chemometric analysis emphasize:
- The polyethylene is globally weakly impacted
- Modifications taking place essentially > 115 kGy
- Modifications deal with chemical moieties having a high ε (coefficient of absorption)
- γ dose \Rightarrow impact on carboxylic acid generation and unsaturation

XPS analysis confirms:
- Oxidation occurs
- No trace of hydroperoxide detected
Modification in film core

- Material core chemical change on sample cross section by Raman spectroscopy – S80

Conditions:
- 5 µm step
- Spot of 1.3 µm
Modification in film core

Material core chemical change on sample cross section by Raman spectroscopy:

→ No modification observable by Raman spectroscopy of the PE and EVOH
Structural modifications

- Radicals could lead to:
 - Cross-linking or/and scission → changes in tensile features and thermal properties

- UTS ↗ - Elongation ↘
- UTS ↘ - Elongation ↗
Structural modifications

Tensile properties of S80 film:

- **UTS (MPa)**
- **Elongation (%)**

MD = Machine Direction

TD = Transversal Direction

Constant

Drop from 115 kGy

Identical observations with film/film welding
Modification on film core

Water permeability

Measured via the water vapor transmission rate (WVTR) (cm3/m2/24h):

- WVTR constant in the 0-270 kGy range

- PE thus slightly modified:
 - no scission or cross-linking took place in a way to influence the WVTR
By-products formation

Detection in extractables study

1 Jan C. J. Bart, Polymer Additive Analytics: Industrial Practice and Case Studies, Firenze University Press, 2006, p27
Contents

1. Purpose and Scope
2. Materials & Methods
3. Approach and Results
4. Conclusion and Perspectives
Conclusion

What is the impact of the γ-irradiation on the S80 film?

- The S80 globally not impacted by the γ-irradiation
Conclusion

- Film handling features unchanged in the range 30-50 kGy
- No change of the WVTR
- PE globally not impacted
- PE and EVOH not globally impacted
- Presence of the hydroxyalkyl radical R-CH_2-$\text{C}^\cdot$$(\text{OH})$-$\text{CH}_2$-$R$
- WVTR
- PE slightly impacted
- Presence of carboxylic acids
- Presence of unsaturated products
Conclusion

What is the impact of the γ-irradiation on the S80 film?

- The S80 globally not impacted by the γ-irradiation
- Gamma irradiation is the starting point of the modifications
- Interactions of films with environment should be evaluated
Perspectives

- The principal plastic materials used for the fluid contact are mainly made up of semi-crystalline polymers:
 - Polyolefins (PE, PP & EVA)
 - PVC
 - Silicone (Siloxane, PDMS)
 - PA(X,Y)
 - Polyesters (PET, etc.)
 - Thermoplastic elastomer (TPE)

- Other materials are used to bring special features:
 - EVOH
 - Binding agents

Material behavior to gamma irradiation will be different
Acknowledgments

- Sylvain Marque, Prof.
- Nathalie Dupuy, Prof.
- Fanny Gaston, PhD
- Magali Barbaroux, PhD
- All Sartorius lab teams
- All persons from Aix Marseille University involved in several analysis and discussions