Synthesis and Static Oxidation Testing of Doped HfB2 Powders

Pengxiang Zheng
Loughborough University

Jon Binner
University of Birmingham

Bala Vaidhyanathan
Loughborough University

Follow this and additional works at: http://dc.engconfintl.org/uhtc-iii

Part of the Materials Science and Engineering Commons

Recommended Citation

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications III by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Synthesis and Static Oxidation Testing of Doped HfB$_2$ Powders

Pengxiang Zheng, Jon Binner* and Bala Vaidhyanathan

Loughborough University
*University of Birmingham
UK
Problems with HfB$_2$ Ceramic Oxidation

HfB$_2$ oxidises to HfO$_2$ readily; whilst not a problem in itself, like ZrO$_2$, HfO$_2$ undergoes a phase transformation with an associated volume change that opens up porosity.

Phase transformation of the oxide product of HfB$_2$

One solution is to dope the HfB$_2$ so that on oxidation it forms stabilised, tetragonal HfO$_2$
Dopant Selection

<table>
<thead>
<tr>
<th>Compound</th>
<th>Melting point /°C</th>
<th>Crystal structure</th>
<th>Covalent radius of the metal atom / pm</th>
</tr>
</thead>
<tbody>
<tr>
<td>HfB₂</td>
<td>3250</td>
<td>Hexagonal</td>
<td>175±10</td>
</tr>
<tr>
<td>YB₄</td>
<td>2150</td>
<td>Tetragonal</td>
<td>190±7</td>
</tr>
<tr>
<td>TaB₂</td>
<td>2850</td>
<td>Hexagonal</td>
<td>170±8</td>
</tr>
<tr>
<td>LaB₆</td>
<td>2250</td>
<td>Cubic</td>
<td>207±8</td>
</tr>
<tr>
<td>MgB₂</td>
<td>830</td>
<td>Hexagonal</td>
<td>141±7</td>
</tr>
</tbody>
</table>

TaB₂ was chosen because of its similar crystal structure and atomic radius to that of HfB₂
Addition of Ta-Dopant

\[\text{TaCl}_5 \text{ dispersed in ethanol, HfCl}_4 \text{ in de-ionised water. Ammonia used to form hydroxides & remove Cl}^- \text{ions.} \]

\[\Delta G < 0 \text{ at } >1350^\circ \text{C} \]

\[\text{Phenolic resin} \]

\[\text{Dissolved in ethanol} \]

\[\text{Co-precipitates} \]

\[\text{Ta}_2\text{O}_5 + 2\text{B}_2\text{O}_3 + 11\text{C} \rightarrow 2\text{TaB}_2 + 11\text{CO}^\uparrow \]

\[\Delta G < 0 \text{ at } >1327^\circ \text{C} \]
Ta-Doped HfB$_2$ Powder

10 wt% Ta-doped HfB$_2$ powder

EDX mapping shows the Ta distributed homogeneously. The particle size was \sim0.5 µm, but the final product contained hard agglomerates.
All the peaks correspond to HfB$_2$ confirming the formation of (Ta,Hf)B$_2$ solid solution
Lattice Parameter of Pure and Doped HfB$_2$

Peak of HfB$_2$ (101) plane shifts to right with addition of more TaB$_2$ dopant

<table>
<thead>
<tr>
<th>Lattice parameter</th>
<th>HfB$_2$ (literature)</th>
<th>HfB$_2$ (this study)</th>
<th>5% TaB$_2$-doped HfB$_2$</th>
<th>10% TaB$_2$-doped HfB$_2$</th>
<th>15% TaB$_2$-doped HfB$_2$</th>
<th>TaB$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a / nm</td>
<td>0.3141</td>
<td>0.3142</td>
<td>0.3140</td>
<td>0.3139</td>
<td>0.3138</td>
<td>0.3088</td>
</tr>
<tr>
<td>c / nm</td>
<td>0.3470</td>
<td>0.3470</td>
<td>0.3468</td>
<td>0.3466</td>
<td>0.3464</td>
<td>0.3241</td>
</tr>
</tbody>
</table>
After 1600°C oxidation, pure HfB$_2$ yielded entirely monoclinic HfO$_2$ whilst the 10%TaB$_2$-doped HfB$_2$ gave almost phase pure tetragonal HfO$_2$.
After 1600°C oxidation, pure HfB$_2$ yielded entirely monoclinic HfO$_2$ whilst the 10%TaB$_2$-doped HfB$_2$ gave almost phase pure tetragonal HfO$_2$.

XRD Results after 1600°C Oxidation of Powder
Modelling

Low Temp < ~ 1000°C

- ZrB$_2$
- B$_2$O$_3$(s,l)
- ZrO$_2$
- B$_2$O$_3$(g)

Porous ZrO$_2$ – Wetted by B$_2$O$_3$

Intermediate Temp (~1000 to ~1800°C)

- ZrB$_2$
- ZrO$_2$
- B$_2$O$_3$(l)
- B$_2$O$_3$(g)

Porous ZrO$_2$ – partially filled

Very High Temp > ~1800°C

- ZrB$_2$
- B$_2$O$_3$(g)
- ZrO$_2$
- ZrO$_2$(g)

Porous ZrO$_2$ – Enhanced Oxidation

Predicted: recession rates, scale thicknesses, weight gain (all validated against expts)

Phase transformation of ZrO$_2$ and HfO$_2$ plays a significant role (increases pore volume)

TA Parthasarathy

Loughborough University

UNIVERSITY OF BIRMINGHAM

XMat
Materials Systems for Extreme Environments
Modelling

Predicted: recession rates, scale thicknesses, weight gain (all validated against experiments).

Phase transformation of ZrO₂ and HfO₂ plays a significant role (increases pore volume).
<table>
<thead>
<tr>
<th>Ta-Doped Samples after SPS at 2100°C, 50 MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treibacher HfB$_2$</td>
</tr>
</tbody>
</table>

20 mm
Ta-Doped Samples after SPS at 2100\(^\circ\)C, 50 MPa

- Peak shifts show that Ta atoms remain in solid solution.
- No residual TaB\(_2\) in the 15 wt% Ta-doped HfB\(_2\) sample.
Ta-Doped Samples after SPS at 2100°C, 50 MPa

<table>
<thead>
<tr>
<th>Samples</th>
<th>Density / g cm⁻³</th>
<th>Relative density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treibacher HfB₂</td>
<td>9.83</td>
<td>93.62%</td>
</tr>
<tr>
<td>0 wt% Ta-doped HfB₂</td>
<td>8.93</td>
<td>85.04%</td>
</tr>
<tr>
<td>5 wt% Ta-doped HfB₂</td>
<td>9.24</td>
<td>87.73%</td>
</tr>
<tr>
<td>10 wt% Ta-doped HfB₂</td>
<td>9.36</td>
<td>88.59%</td>
</tr>
<tr>
<td>15 wt% Ta-doped HfB₂</td>
<td>9.55</td>
<td>90.12%</td>
</tr>
</tbody>
</table>

Theoretical value for HfB₂ 10.50

Theoretical value for TaB₂ 11.15

The addition of Ta improves the sinterability of HfB₂
The addition of Ta improves the sinterability of HfB₂
10 wt% Ta-doped HfB$_2$

Ta homogeneously distributed.

Carbon was found in all the samples (including the commercial HfB$_2$). It is probably from the protective graphite sheet used for SPS.
Ta-Doping of HfB$_2$ – Summary & Future Work

- High purity, sub-micron (\sim0.5 µm) Ta-doped HfB$_2$ has been synthesized.
- The 10 wt% Ta-doped HfB$_2$ was able to almost fully stabilize HfO$_2$ in the tetragonal phase after oxidation of the powder at 1600°C.
- The addition of Ta-dopants improve the sinterability of HfB$_2$.

- In order to achieve higher density, the 10 wt% Ta-doped HfB$_2$ powders will be SPSed at 2400°C and 500 MPa at QML.
- Samples with satisfactory density (>98%) will be oxidized to investigate TAPs’ model.
Thank You