Engineering Conferences International ECI Digital Archives

Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications IV

Proceedings

9-18-2017

Phase transformations in oxides above 2000°C: Experimental technique development

Sergey V. Ushakov University of California at Davis, svushakov@ucdavis.edu

Alexandra Navrotsky University of California at Davis

Follow this and additional works at: http://dc.engconfintl.org/uhtc_iv Part of the <u>Engineering Commons</u>

Recommended Citation

Sergey V. Ushakov and Alexandra Navrotsky, "Phase transformations in oxides above 2000°C: Experimental technique development" in "Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications IV", Jon Binner, The University of Birmingham, Edgbaston, United Kingdom Bill Lee, Imperial College, London, United Kingdom Eds, ECI Symposium Series, (2017). http://dc.engconfintl.org/uhtc_iv/58

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications IV by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Phase transformations in oxides above 2000 °C: experimental techniques development

Sergey V. Ushakov and Alexandra Navrotsky UC Davis Peter A. Rock Thermochemistry Laboratory, Davis, CA

Differential Thermal Analysis Drop calorimetry X-ray and neutron diffraction

M. Zinkevich, Progress in Materials Science 52, 597 (2007)

ww.nist.gov/publications/open-calphad-free-thermodynamic-software						G	C Q opencalpahd	
🛞 RUA_1424 🛞 WorldCat: University o	😵 PO 🛞	Glushko	🛞 Photos - Google+	TimeSheet	JAcerS	•	Conv D	ScholarO
NIST								S

PUBLICATIONS

Open Calphad - a free thermodynamic software

Published: January 17, 2015

Author(s)

Bo Sundman, Ursula R. Kattner, Mauro Palumbo, Suzana G. Fries

Abstract

The use of thermodynamics in many applications in material science like simulation of phase transformation suffers from the lack of high quality open source software for calculations of multicomponent systems. The goal of the Open Calphad (OC) software is to bridge this gap. The OC software has a GNU license which makes it possible for the interested scientist to implement and test new ideas for models and algorithms. Currently such development can be done only using proprietary software. The assessment of model parameters using both experimental data and data from theoretical calculations like DFT will have increased efficiency using software that can be directly integrated in various applications.

Citation: Integrating Materials and Manufacturing Innovation Volume: 4

Pub Type: Journals

Shpil'rain 1972 DROP calorimeter

1960s - Drop calorimetry from above 2000 °C 1962-1963 Kantor, Sheindlin et al. Al_2O_3 heat of fusion 1963 Pears et al. report on thermal properties of 26 solids to 5000 °F 1968 Hein et al. heat of fusion of UO₂

Cooling traces from solar furnace 1966 Foex and Traverse 1976 Coutures, Rounet et. al

1980s – DTA to 2600 °C 1981 Shevchenko and Lopato

Setaram Setsys TG/DTA 2400

SV Ushakov, A Navrotsky, JMR, 26(7), 845 (2011)

Setaram Setsys TG/DTA 2500

SV Ushakov, A Navrotsky Journal of the American Ceramic Society 97 (5), 1589-1594

Levitation calorimetry

Year	Authors	Element	Temperature range (K)		
1970	Chaudhuri et al. [25]	Cu	1386–1887 (1)		
1970	Chaudhuri et al. [25]	Pt	2202-2631 (1)		
1970	Treverton and Margrave [26]	Mo	2692-3112 (1)		
1971	Berezin et al. [27]	Mo	2890-2925 (1)		
1971	Treverton and Margrave [28]	Fe	1804–2142 (1		
1971	Treverton and Margrave [28]	Ti	1969-2313 (1		
1971	Treverton and Margrave [28]	v	2205-2638 (1)		
1971	Treverton and Margrave [29]	Co	1774-2345 (1)		
1971	Treverton and Margrave [29]	\mathbf{Pd}	1846-2334 (1		
1972	Sheindlin et al. [30]	Nb	1650-2707 (s		
1972	Berezin et al. [31]	v	2084-2325 (1)		
1974	Stretz and Bautista [32]	Υ	1799-2360 (1		
1974	Stephens [33]	Cu	1428-2007 (1		
1974	Stephens [33]	U	1428-2398 (1		
1975	Stretz and Bautista [34]	Nd	1446-2246 (1		
1975	Stretz and Bautista [35]	La	1250-2420 (1		

M.G. Frohberg – "Thirty years of levitation calorimetry – a balance" (1999)

REVIEW OF SCIENTIFIC INSTRUMENTS

VOLUME 74, NUMBER 2

An aerodynamic levitation system for drop tube and quenching experiments

Yasutomo Arai,^{a)} Paul-François Paradis, Tomotsugu Aoyama, Takehiko Ishikawa, and Shinichi Yoda

National Space Development Agency of Japan, Space Utilization Research Program, Tsukuba Space Center, 2-1-1 Sengen, Tsukuba City, Ibaraki 305-8505, Japan

FEBRUARY 2003

Drop-n-Catch calorimeter

SV Ushakov, A Shvarev, T Alexeev, D Kapush, A Navrotsky, J. Amer. Cer. Soc. 100 (2), 754-760 (2017) D Kapush, SV Ushakov, A Navrotsky, QJ Hong, H Liu, A van de Walle Acta Materialia 124, 204-209 (2017)

Experimental capabilities for drop calorimetry from above 2000 °C were re-established

Quantitative DTA is possible to 2400 °C with commercially available instruments

Matthew Fyhrie

Thermodynamic data from high-T diffraction

- Molar volumes as a function of temperature
- ➢ ∆V for solid state phase transitions
- In situ phase diagram determination

Chris Benmore

Richard Weber

Joerg Neuefeind

HT XRD Y₂O₃

Ushakov S.V. & Navrotsky A. (2012) J. Am. Ceram. Soc. 95, 1463

Results from 3 days of diffraction experiments on levitator at APS (June 15-17, 2011)

- Y₂O₃ transforms in H-type before melting in Ar and C₂.
 Volume reduction on C-H phase transition was refined.
- Pyrochlore structure of La₂Zr₂O₇ persists to the melting temperature. Thermal expansion was used to validate high temperature *ab initio* calculations.
- Thermal expansion of Eu₂O₃-ZrO₂ DF solid solutions and anti-site occupancies on pyrochlore-DF phase transition in Eu₂Zr₂O₇ were refined.

Maram PS, Ushakov SV, Weber RJK, Benmore CJ, & Navrotsky A (2015) *J. Am. Ceram. Soc.* 98 (4), 1292 Hong Q-J, Ushakov SV, Navrotsky A, & van de Walle A (2015) *Acta Mater.* 84, 275 Ushakov SV & Navrotsky A (2012) *J. Am. Ceram. Soc.* 95, 1463

Bredig transition in YSZ from neutron diffraction at SNS, NOMAD (Aug 23-29, 2014)

Ushakov, S. V., Navrotsky, A., Weber, R. J. K. and Neuefeind, J. C. J. Am. Ceram. Soc., 98: 3381 (2015),

Thermal expansion of C-type RE₂O₃ in oxygen flow

A Pavlik, SV Ushakov, A Navrotsky, CJ Benmore, RJK Weber, Journal of Nuclear Materials, 495 (2017) 385-91

C-H pre-melting phase transitions RE₂O₃

Pre-melting C-H phase transition in Er₂O₃ in Ar

H-type Z=1

 $Y_2O_3 \quad \Delta V \quad -3.1\%$ $Er_2O_3 \quad \Delta V \quad -3.4\%$ $Ho_2O_3 \quad \Delta V \quad -3.9\%$

C-type Z=16

Summary: Structure refinement above 2000 °C is possible using aerodynamic levitators available at APS 6-ID-D and SNS NOMAD

Acknowledgement NSF DMR-1506229

Charles Bennett George Wayrynen Denys Kapush Pardha Maram Timur Alexeev Ethan Chao Sergio Hernandez Luke Bingham Alethia Sison Renee Hu Alfred Pavlik Matthew Fuhrie

Richard J. K. Weber, MDI Chris J. Benmore, ANL Joerg C. Neuefeind, ORNL Axel van de Walle, Brown U Qi-Jun Hong, Brown U Jake McMurray, ORNL Scott McCormack , UIUC

