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Agenda

1. Problem statement

2. Energy based theories 

3. 3D Cyclic Dislocation 
dynamics

4. Energy in dislocation 
networks

5. Multi-scaling: Efficiency 
factor and crystal 
plasticity
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3D cyclic 
dislocation 
dynamics

Crystal 
plasticity



Energy model of fracture
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𝐺 = 2𝛾 − 𝐸𝑒𝑙 +𝛾𝑝



Energy model of fracture
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Atomistic calculation of cohesive energy

Chemistry

𝐺 = 2𝛾 − 𝐸𝑒𝑙 +𝛾𝑝



Energy model of fracture

55

Mechanics

𝐺 = 2𝛾 − 𝐸𝑒𝑙 +𝛾𝑝

Elastic energy release rate (LEFM)

𝐸𝑒𝑙 = (1 − 𝑣)
𝐾2

2𝜇



Energy model of fracture

𝐺 = 2𝛾 − 𝐸𝑒𝑙 +𝛾𝑝

• There is no “first principles” model to predict 𝛾𝑝 (yet). 

• 𝛾𝑝 = stored energy (eg. Dislocation structure) + heat 

energy
• Most of the energy is heat (>95%).



Energy model of fracture

𝐺 = 2𝛾 − 𝐸𝑒𝑙 +𝛾𝑝

Plastic work can be 
estimated from 
experiments (2g: DFT, 
𝐸𝑒𝑙: Experiments, G=0 
at fracture), can be 
plotted in terms of 𝛾
(see my poster)
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Incremental Energy Model

• Perform energy balance at the moment the crack 
forms

• Thermal dissipation neglected at that instant.
• The surface energy is balanced by the release of 

elastic energy and the removal of stored dislocations.
• Approach brings in crack size ∆𝐴: not so popular!
• Terms are about the same order of magnitude

∆𝐺∗ = 2𝛾∆𝐴 − 𝐸𝑒𝑙
∆𝐴 −𝐸𝑠𝑡𝑜𝑟𝑒𝑑 + 𝛿𝑑𝑖𝑠𝑠

Mura and Nakasone, A Theory of Fatigue Crack Initiation in Solids, J. Appl. Mech., 57 (1990)
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Incremental Energy Model

∆𝐺∗ = 2𝛾∆𝐴 − 𝐸𝑒𝑙
∆𝐴 −𝐸𝑠𝑡𝑜𝑟𝑒𝑑 + 𝛿𝑑𝑖𝑠𝑠

Mura and Nakasone, A Theory of Fatigue Crack Initiation in Solids, J. Appl. Mech., 57 (1990)

∆𝐺∗

∆𝐴

Crack initiation



Increment in crack size
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∆𝐴 (crack area) is total length of 
dislocations times the Burger’s vector

Dislocation dynamics can predict stored energy AND crack size. 
Avoids difficulties associated with modeling thermal effects.



Dislocation Dynamics – General

• Only model the dislocation line –
no atoms

• Discretize the dislocations into 
line segments, evolve using 
Peach-Kohler force

• Advantages: 
• DD: micrometers and 

microseconds vs Atomistic 
models: nanometers, 
nanoseconds

• Can model at grain level, with slip 
reactions vs homogenized forms 
in crystal plasticity

• Disadvantages:
• O(N2)-Problem  high strain 

values (>1%) difficult to obtain
• Topology of dislocations changes, 

causing continuous remeshing
• Computationally expensive

11[1] Bulatov, Vasily, Cai, Computer Simulations of Dislocations



Dislocation Dynamics

• Steps for a DD calculation:
1. Calculate the force on each node
2. Move the dislocations according to a 

mobility function
3. Apply topological changes: Split, Merge, 

Remesh

• Nodal force: elastic force + core-energy 
contribution
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• Elastic force is due to long range effects that 
can be captured from continuum mechanics

• Core energy due to local effects of highly 
distorted atoms close to dislocation, where 
continuum mechanics cannot be used

(1)

(2)

(3)

[1] Arsenlis et al., Enabling strain hardening simulations with dislocation dynamics, 
Modelling Simul. Mater. Sci. Eng., 15 (2007) 553-595



Dislocation Dynamics

• Mobility function: velocity as function of force
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• Would lead to curved dislocation segments  invert, 
implicitly define velocity

• This represents motion in over damped regime

• The mobility functions are the material model of DD 
code (prefer certain glide planes over others …)

• With forces and velocities defined, calculate the next 
time step: (explicit)

(implicit, iterative)



Topological changes

• When dislocations collide/ annihilate/ change size  need to change 
discretization

• Core reactions need to be derived from DFT/ MD

• Only two operations defined in ParaDiS: split node and merge node 
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Example - split node:
(a) Initial network
(b) Remove connections of node 0 

to 1 and 4 and connect to new 
node 5

(c) Connect 0 to 5 and conserve 
Burgers vector



New additions to DD code

• Energy calculations for every mechanism
• damping, annihilation, core, interactions, self energy

• External and internal work

• Test energy conservation for different loading cases

• Enable cyclic stress driven loading 

• Grain boundary mechanism – pile-ups

• Quasi-Newton implicit solver

15



Energy contributions in DD 
simulations

• Annihilation energy – Energy associated with topological 
operations, that are not accompanied by movement

• Damping of moving dislocations

• Internal elastic energy

• External Work

• Core energy

• Energy of elastic dislocation field (self and interaction) see 
Cai et al. (2006)

• Sum has to be constant
16

V/2



Collapsing loop

• No external work 
applied

• All initial elastic 
energy of the loop 
went into 
dissipation 
(movement of 
loop) and 
annihilation 
(‘dissipation 
without 
movement’)

• Sum is constant

17



Frank-Read Source

18



Frank-Read Source

• At beginning elastic energy 
increases

• After external load removed, load 
collapses and internal energy of 
dislocations dissipated to heat 
(damping) 19



Cyclic loading

• Largest ever fatigue DD 
simulation till date – 40 
cycles, 6 weeks on 128 CPUs

• French Group Depres, Fivel –
20 cycles

• Density increases with 
number of cycles

20



Initial and final state
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Persistent dislocations 
over number of cycles

∆𝐺∗ = 2𝛾∆𝐴 − 𝐸𝑒𝑙
∆𝐴 −𝐸𝑠𝑡𝑜𝑟𝑒𝑑

Chemical effects can be added as an osmotic force: 
(Future work)



Initial and final state
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Persistent dislocations 
over number of cycles

∆𝐺∗ = 2𝛾∆𝐴 − 𝐸𝑒𝑙
∆𝐴 −𝐸𝑠𝑡𝑜𝑟𝑒𝑑

Chemical effects can be added as an osmotic force: 
(Future work)



Cyclic loading – Increase in density

23

Dislocation density [m/m3]

After 20 
cycles



Partial energies

• Some dislocations are very far spaced out, unlikely to form one (contiguous) 
crack

• Remove only some dislocations in area where dislocation density is highest

• As before: total energy of all dislocations (and possible external elastic field) 
MINUS energy of remaining dislocations after crack is formed EQUAL to energy 
of the crack

• IMPORTANT: The dislocations removed should be able to form a surface of the 
size of the crack

24



Modelling dislocation density 
evolution analytically

Dislocation accumulation is typically modeled as 
linear with number of cycles

Mura and Nakasone, A Theory of Fatigue Crack Initiation in Solids, J. Appl. Mech., 57 (1990)



Dependence of dislocation length 
on cycles and volume

• Assume up to quadratic increase in space and square root in w.r.t 
number of cycles

26



Dependence of dislocation length 
on cycles and volume

• At any given point in 
time the dislocation 
removed in the test 
volume should form a 
crack of comparable 
size:

Currently dislocations in sphere are removed

27



Doing the numbers
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Incubation crack we found is 150 nm



Varying maximum strain

• As expected: 
higher 
maximum load 
leads to 
increase in 
dislocation 
density

• Incubation 
crack sizes and 
critical cycles 
will be different

• Could be linear 
with respect to 
cycles – Mura.

29



Comparison to experiments

30

• At higher strain 
levels: DD 
conservative

• Experimental: 
detectable 
initiation & full 
failure

• DD results are 
for initiation



Comparison to experiments
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• At higher strain 
levels: DD 
conservative

• Experimental: 
detectable 
initiation & full 
failure

• Numerical: 
initiation

Initiation 
(DD) 0.1 mm Initiation (expt) 

10 mm

failure

C
yc

le
s 

to
 f

ai
lu

re



Multiscale crystal plasticity
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Plastic work in virtual crack

(Li, Shen & Proust, 2015
Fine & Bhat,  2007, Naderi et al (TDA) 2016)

Stored energy

• Crystal plasticity can be used to compute (total) plastic work

• The total work can be scaled by an efficiency factor to compute 
the stored energy

• The efficiency factor is obtained from dislocation dynamics



• Rate independent CPFE formulation 
for copper

• Random FCC orientation

• Cyclic loading for 20 cycles

• Plastic Stored Energy Density (J/m3) 
for various grains are plotted

CPFE simulations
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PSED per cycle 
εmax=0.3%



Efficiency factor comparison between 
DD and CPFE + experiments

34



Conclusion

• Performed the largest cyclic dislocation dynamics 
simulation till date. Accurately computed energy in 
stored dislocations.

• Showed an incremental energy approach for using DD 
results
• Hypothetical crack is inserted and incremental energy balance 

is calculated
• Energy stored in dislocation network drives crack
• Has to balance surface energy change and reduction in 

continuum energy due to crack

• Showed how to calculate efficiency factor from DD for 
use in continuum or crystal plasticity calculations

• Future work: Addition of crack tip stress fields. Addition 
of precipitate structure, addition of chemical effects 
(solute, environment)
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Thank you for your 
attention!

Questions?
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