Sharp Contact Damage in Ion-Exchanged Cover Glass

Tim Gross
Corning

Jim Price
Corning

Scott Glaesemann
Corning

Follow this and additional works at: http://dc.engconfintl.org/functional_glasses

Part of the Materials Science and Engineering Commons

Recommended Citation
Sharp Contact Damage in Ion-Exchanged Cover Glass

Tim Gross, Jim Price, Scott Glaesemann

Functional Glasses: Properties and Applications for Energy and Information
January 6-13 in Siracusa, Sicily, Italy
Overview

• Sharp point contact, the primary failure mode in ion-exchanged cover glass.
• Replication of field damage using diamond indenters
 – Role of indenter angle and rate of contact.
• Sharp scratch events, the source of highly visible cosmetic damage.
• Measurements of retained strength following sharp contact events.
Primary failure mode in ion-exchanged cover glass is sharp contact and associated flexure

- Sharp contact deformation is defined by the glass response. It occurs when the contact load is distributed over small contact area and elastic limit is exceeded resulting in permanent deformation.
- Strength limiting flaw formation initiates within the permanent deformation region.
- Crack extension to failure occurs as contact flaws extend through the depth of compressive layer.
Using diamond indentation to mimic the response from sharp contact

The Vickers diamond indenter is a 4-sided pyramid with angle between opposite faces $2a = 136^\circ$.
Vickers indents in ion-exchanged glass produce the median/radial and lateral crack systems seen in field damage.

- Indentation is used to determine the resistance to the formation of strength limiting flaws, i.e. median/radial cracks, that are oriented perpendicular to the glass surface.
- The Vickers median/radial crack indentation threshold of alkali aluminosilicate glass increases from ~500 gf for non-strengthened glass to ~7000 gf for glass ion-exchanged to compressive stress (CS) ~700 MPa and depth of layer (DOL) ~50 microns.
- With DOL sufficient to contain the deformation region, the Vickers median/radial crack initiation load increases with CS for a given glass type. For example, if the depth of compressive layer is fixed at 50 microns, an alkali aluminosilicate sample with surface compressive stress of 500 MPa has a cracking threshold of 4 kgf, while a sample with surface compressive stress of 800 MPa has a cracking threshold of 7 kgf.
Deformation of ion-exchanged glass

• Following ion-exchange, glasses still deform by the same mechanism as in the non-ion-exchanged glass.
• Normal glasses deform primarily by a shearing mechanism both pre- and post- ion-exchange.
• However, propagation of shear damage into median/radial cracks is limited due to the compressive stress field.
Deformation mechanisms

- The resulting permanent deformation by sharp contact is the result of two competing mechanisms: shear deformation and densification. Deformation mechanism depends on glass structure (i.e. network connectivity, free volume), contact geometry, and rate of contact.
- Shear deformation – Volume displacing mechanism leads to “pile-up” at the periphery of the indent. Indentation with sharper indenter tips favor shear deformation.
- Densification- Glass is compacted rather than displaced. Indentation with blunter indenter tips favor densification. High rate contact also appears to favor densification.
Effect of indenter sharpness on amount of densification

Using densification recovery technique described by Mackenzie [JACS 46(1963) 461], Yoshida et al. demonstrated the reduction in densification with increasing indenter sharpness.

• Blunt tips produce more densification during indentation.
• During densification the glass is compacted rather than displaced.
• Subsequent sub T_g heat-treatment leads to nearly a full recovery of the deformed material.

• Sharp tips produce more shear deformation during indentation.
• This deformation leads to displaced material that piles up at the edges of the indent impression.
• Heat-treatment does not recover material that has deformed by plastic flow.

Cross-section of indents made in non-IXed alkali aluminosilicate at 500 gf with various indenter tips

Deformation by a shearing mechanism creates subsurface cracking damage in the deformation region that initiates larger crack systems, i.e. median/radial and lateral cracks. The extension of crack systems is driven by the greater residual stress that results from volume-displacing shear deformation.

Deformation by densification produces less sub-surface damage and less residual stress, so that the threshold load required to initiate cracking systems increases.

Densification increases resistance to “normal” cracking. However, as the degree of densification increases, the propensity towards cone cracking also increases.
Indentation cracking behavior on the surface in non-IXed parts also indicates the change in deformation mechanism towards densification as the contact becomes blunter.

![Indentation cracking behavior](image)

- **120° tip at 30 gf**
- **Vickers 136° tip at 500 gf**
- **150° tip at 8000 gf**

Normal sharp cracking behavior indicates that deformation occurs with significant shear deformation.

Mixed normal/anomalous cracking behavior indicates that deformation is occurring with greater densification.

Resistance to the formation of cracks increases as the deformation mechanism tends towards densification.

<table>
<thead>
<tr>
<th>Indenter tip</th>
<th>Non-ion-exchanged median/radial cracking threshold (gf)</th>
<th>Ion-exchanged median/radial cracking threshold (gf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120°</td>
<td>15-30</td>
<td>50-100</td>
</tr>
<tr>
<td>136°</td>
<td>300-500</td>
<td>5000 - 7000</td>
</tr>
<tr>
<td>150°</td>
<td>7000 - 8000</td>
<td>>10,000</td>
</tr>
</tbody>
</table>

Ring crack
Deformation mechanisms & rate of contact

Ion-exchanged alkali aluminosilicate indented at 7 kgf. Quasi-static indentation with load/unload rate = 0.2 mm/min (0.00333 mm/s), dwell time = 10 seconds.

Ion-exchanged alkali aluminosilicate indented with Vickers at 57.3 kgf at 410 mm/s impact velocity. No median/radial cracks

CS = 814 MPa DOL = 54 microns
Schematic of dynamic indenter

Sample holder on frictionless air bearing. Allows single point, free rebound contact.

Indenter induces flaw into glass. Attached to piezoelectric load cell to record force.

Variable speed belt-slide with translating base plate, which sample holder is fixed to
Dynamic Vickers median/radial cracking threshold is substantially higher than for quasi-static indentation.

For quasi-static Vickers indentation, median/radial cracks form during unloading.

During dynamic Vickers indentation, median/radial cracks form during loading.

Increased contact stress on median plane during loading is an indicator of densification according to Yoffe [Phil. Mag. A 46 (1982) 617]. Hint at a transition towards densification at high rate Vickers indentation?
Indentations made at 4.5 kgf by dynamic and quasi-static indentation

IXed alkali aluminosilicate indented at 4.5 kgf using dynamic indenter, contact event time 1266 microseconds, diagonal length ~ 116 microns.

IXed alkali aluminosilicate indented at 4.5 kgf using dynamic indenter, contact event time 55 seconds, diagonal length ~ 120 microns.
Optical retardation indicates a drop in residual stress for a given load during dynamic contact.

Quantitative 2D grayscale maps of stress-induced optical retardation of 4.5 kgf indents made in alkali aluminosilicate specimens using quasi-static and dynamic indentation. Magnitude of retardation is significantly larger for the quasi-static loading case.

Stress-induced retardation profile comparison for alkali aluminosilicate indented using quasi-static and dynamic loading.

Less residual stress is an indicator of reduced amount shear deformation.
Dynamic Indentation with sharper 120° indenter tip

Strength limiting flaw formation driven on unloading indicates subsurface damage coupled with higher residual stress in this load regime. Again, sharper contact promotes shear deformation. Higher load rate still improves the median/radial cracking threshold drastically over quasi-static indentation.

CS = 840 MPa DOL = 53 microns
Dynamic Indentation with sharper 120° indenter tip
CS vs. DOL

- CS = 849 DOL = 43 survivors
- CS = 849 DOL = 43 failures
- CS = 366 DOL = 100 survivors
- CS = 366 DOL = 100 failures

Contact Load (kgf) vs. Velocity (mm/s)
Replicating sharp contact scratches in ion-exchanged glass

I. Initially, plastic deformation occurs without the presence of cracks.
II. Increased frictional forces cause minor friction-type damage.
III. Lateral cracking systems eventually cause highly visible chipping at the surface.
Regime II damage in scratched glasses

- Shallow cracks on either side of the scratch groove tend to form prior to the onset of larger median and lateral cracking systems.
- These have previously been described as radial cracks, but our measurements indicate that they are frictive since their presence depends on the surface quality of the glass being measured.
- Frictive cracks initiate at the surface from pre-existing flaws and extend into the subsurface to form crescent shaped cracks.
- At higher loads near-surface chipping connects these cracks.

Focusing into the subsurface reveals that this damage appears to be frictive in nature.
Subsurface look at scratch damage in non-ion-exchanged glass

Median crack formation occurs first and is followed by lateral cracking.

Subsurface scratch damage in ion-exchanged glasses
In highly ion-exchanged glasses the lateral crack forms prior to the median crack.

Ion-exchanged alkali aluminosilicate, Compressive stress = 770 MPa Depth of layer = 48 microns

- The ion-exchange compressive stress prevents the formation of median cracks, but does not prevent lateral crack formation in the plane parallel to the glass surface.
- At substantially higher loads median cracks will form and the glass will separate through the thickness.
- The formation of lateral crack systems appears independent of compressive stress (CS) and depth of layer (DOL) as long as stress levels are high enough to suppress median crack as initial cracking system.
- The lateral cracks initiate from the subsurface damage in the deformation zone.
Lateral cracking threshold criteria

The lateral cracking threshold is defined in this work as the load which produces visual lateral cracks that extend a distance of twice the width of the scratch groove on either side.

10 mm long scratch with cracks exceeding lateral cracking threshold has high visual impact.

Pre-threshold scratches are difficult to see with the naked eye.
Scratch damage with various tips

- The deformed region beneath an indent consists on material that has deformed by plastic flow (shear deformation) and by densification.
- Again, as the indenter becomes sharper glass response tends more towards plastic flow and the crack initiation load decreases.
- To demonstrate the effect of tip geometry the scratch test is performed on ion-exchanged alkali aluminosilicate (CS = 770 MPa and DOL = 48 microns) with the following tips:
 - 120° 4-sided pyramidal tip
 - 136° 4-sided pyramidal tip (Vickers)
 - Knoop tip
 - 150° 4-sided pyramidal tip
Scratches in ion-exchanged alkali aluminosilicate with 120° 4-sided pyramidal tip (sharpest tip)
Scratches in ion-exchanged alkali aluminosilicate with Vickers (136°) tip

0.5 N

1.0 N
Scratches in ion-exchanged alkali aluminosilicate with Knoop tip
Scratches in ion-exchanged alkali aluminosilicate with 150° 4-sided pyramidal tip (least sharp tip)
Retained strength

- The measurement of ring-on-ring strength before and after introduction of controlled damage can be a useful tool to quantify and understand flaw introduction and its impact on mechanical performance.
- Controlled flaws can be introduced as scratches, indentation damage, or as grit blast abrasion.
- This approach provides a convenient means to simulate field failures in a controlled manner.
- If flaws enveloped in compression, want high CS.

![Flaw populations on the surface](image)

SLS Deep DOL
Ring-on-ring testing of Vickers scratches

Comparison of Ion-Exchanged Glass with Thickness = 0.7 mm

- **Alkali aluminosilicate** CS = 753 MPa DOL = 45 microns
- **Soda-lime** CS = 536 MPa DOL = 14 microns

Initially only contains lateral crack. Far less strength limiting flaw than median crack. Also, contained under high CS.

With shallow DOL, strength limiting median crack already present and through DOL.

Scratch is fully within loading ring on bottom of ROR specimen. Load to strength conversion is non-linear.
Scratch ring-on-ring of IXed alkali aluminosilicate at various DOL

Ion-exchanged alkali aluminosilicate (thickness = 0.7 mm)

CS values held nearly constant

CORNING
SiC abrasion causes radial/median cracks to form in both soda-lime and alkali aluminosilicate glasses. Irregular shapes of particles cause damage from a wide range of contact geometries.
If DOL contains flaws, then additional compressive stress improves failure load.
90 Grit SiC Abrasion at various pressures on 0.6 mm alkali aluminosilicate

- Strength limiting flaws are generated at each abrasion pressure used.
- If DOL contains the flaw, the retained load at failure will increase with compressive stress to the flaw depth.
- Low CS, deep DOL parts can contain very deep flaws, however cannot achieve high strength even at shallow flaw depths. Non-abraded, low CS samples are also considerably weaker than high CS samples when testing samples similarly handled.
Summary

• The formation of strength limiting flaws by sharp contact depends on both the contact geometry and the rate of contact.
 – Sharper indenters promote shear deformation, blunter indenters promote densification
 – Quasi-static indentation promotes shear deformation, dynamic indentation promotes densification
• The resistance to the formation of strength limiting flaws is increased with higher compressive stress.
• Cosmetic damage in the form of highly visible lateral crack-containing scratches is also highly dependent on contact geometry.
• The retained strength following sharp contact can be measured using controlled damage introduction following by ROR. Key to retained strength is enveloping the flaw within the DOL and under as high stress as possible (within safe limits of frangibility).
Indentation in N_2

- Indentation N_2 glovebag increases indentation threshold 2X.
- Water was removed from air, but adsorbed water on glass and diamond surfaces was not removed.
- High speed indentation prevents is expected to prevent sufficient water diffusion into glass.
Water diffusion into glass during indentation?

Hardness vs. loading duration in various environments

Evidence of Water entry into glass during indentation

Fig. 4. Infrared transmittance spectra of various liquids.

Water diffusion into glass has also been shown to reduce indentation crack initiation load.

Crack initiation load vs. loading duration in different environments

- Water diffuses into glass occurs in both air and water environments.
- The water uptake is dependent on contact time.
- Contact time for dynamic indentation ranges from 200 to 600 microseconds.
- Contact time for quasi-static indentation is ~30s. Around 100,000 times longer than dynamic indentation.

Fig. 1. Crack initiation load of silica glass in various liquids under a Vickers indenter as a function of loading duration. The crack initiation load is defined as the load which produced radial cracks, on an average, 50% of the time (i.e., at two corners out of four).

Some examples showing that lateral cracking threshold is independent of Ion-Exchange Levels

Constant Load Knoop Scratches in Glass A

<table>
<thead>
<tr>
<th>Load (N)</th>
<th>CS (MPa)</th>
<th>DOL (microns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>861</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CS = 772 MPa DOL = 41 microns
<table>
<thead>
<tr>
<th>Load (N)</th>
<th>Scratch Appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N</td>
<td>CS = 750 MPa, DOL = 33 microns</td>
</tr>
<tr>
<td>2N</td>
<td></td>
</tr>
<tr>
<td>3N</td>
<td>CS = 630 MPa, DOL = 52 microns</td>
</tr>
<tr>
<td>4N</td>
<td></td>
</tr>
<tr>
<td>5N</td>
<td></td>
</tr>
<tr>
<td>6N</td>
<td></td>
</tr>
</tbody>
</table>
Scratch ring-on-ring of IXed alkali aluminosilicate at various DOL

Ion-exchanged alkali aluminosilicate (thickness = 0.7 mm)

- DOL = 15: CS = 792 MPa
- DOL = 30: CS = 785 MPa
- DOL = 45: CS = 753 MPa
- DOL = 60: CS = 722 MPa

Graph showing the relationship between scratch load (N) and ring-on-ring load at failure (N).