Establishing human vaccine manufacturing in Southern Africa

Morena Makhoana

The Biovac Institute

Follow this and additional works at: http://dc.engconfintl.org/vaccine_iv

Part of the Biomedical Engineering and Bioengineering Commons

Recommended Citation

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Vaccine Technology IV by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Setting up the only vaccine manufacturing facility in Southern Africa
History of human vaccine manufacture in SA

<table>
<thead>
<tr>
<th>State Vaccine Institute</th>
<th>SAIMR</th>
<th>National Institute of Virology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Est. 1965</td>
<td>Est. 1935</td>
<td>Est. 1950s</td>
</tr>
<tr>
<td>• BCG</td>
<td>• DPT</td>
<td>• OPV</td>
</tr>
<tr>
<td>• Rabies</td>
<td>• Polio</td>
<td>• Yellow Fever</td>
</tr>
<tr>
<td>• Smallpox</td>
<td>• Cholera /Typhoid</td>
<td></td>
</tr>
</tbody>
</table>

All three facilities terminated production of vaccines between 1995-2001

Due to:
- Lack of relevant skills
- Lack of capital
- Increasing regulation
- Lack of adaptation with new technologies
- Lack of GMP culture/ lack of willingness to adopt GMP
- SA was in a transition period
Developing Country Manufacturers

Source: World vaccines, 2007
The need for human vaccines in Southern Africa continued to exist

- HIV
- Cholera
- Malaria
- Neonatal Tetanus
- Tuberculosis
- Measles
Options at the time......

1. Shut down completely or
2. Privatise or

THE BIOVAC INSTITUTE
A Public Private Partnership

Partner with the private sector
Vision and Objectives

To be a Centre of Excellence routed in Africa for the development and manufacture of affordable vaccines for Africa and the developing world’s needs

- Establish domestic vaccine production capacity
- Ensure economic viability
- Develop and retain local vaccine production skills
- Establish strong R&D capability
- Create a competitive platform for export
- Enable BBBEE
Mandate

1. Source & Supply EPI vaccines
2. Re-establish Manufacturing capacity
Growth and Development

Phase I
- Basic R&D
- Establish basic Quality Control infrastructure
- Establish Labelling & Packaging & Cold Chain capacity
- Recruit expertise

Phase II
- New manufacturing facility
- Invest in QA, QC, Production Logistics expertise & training
- Attract Technology Transfers

Phase III
- Commence Vaccine manufacture
- Implement Technology Transfers
- Invest in new Technology platforms
- Expansion of the site
- New Warehouse and Cold rooms

2003-08
2008-13
2013-
Biovac Headcount Projection
Perm Staff Only

2008 – 2011: 27% increase on headcount
2011 – 2012: 26% proposed increase
2013: 8% increase predominantly at specialist, technician, operator level
Staff requirements

- Vaccine (biological) production regulation standards are increasing globally.
- This requires more skills and higher level skills to maintain global standards.
- Presence of practical versus theoretical experience.
- Experienced skills are expensive and difficult to attract.
- Largest pool of global vaccine skills are located in Europe and Asia.
- Innovation is needed to attract skills.
Status Biovac Institute

Status 2012

- R&D
- Clinical Development
- Antigen Manufacture
- Formulation
- Filling
- Packaging & Labeling
- Cold chain and Distribution

- Existing GMP pilot scale lab
- Facility built in 2005
- New Manufacturing facility 2012
- Expansion of Warehouse & Cold rooms and Packaging 2013
Site in Pinelands, Cape Town
From 2013

Egypt
Senegal
South Africa
Technological Capability
R&D Capacity

Technology PLATFORMS
- Fermentation
- Purification
- Conjugation
- AMD
- Formulation

Supporting PLATFORMS
- Biosafety
- Documentation
- Pre-Clinical
- Clinical
- Project Management

Infrastructure
- Building D: Development Labs
 - BSL3 – Fermentation
 - DSP / Conjugation /AMD
- Building B: Pilot GMP – Clinical Material

7 Senior Scientists
5 Scientists
2 technologists
2 PhD students
4 Technicians
Conjugate Platform

Hib
- Hib development process commenced in 2006/7 aimed at developing a Hib conjugate suitable for use in fully liquid combination vaccines.
- Conjugate chemistry – based on NIH technology. Conjugate chemistry chosen for it’s stability and relative higher yields to previous conjugate processes.
- Stability good as liquid. Data up to 24 months real time.
- Immunogenicity in animals is good - compared very well to commercial conjugate.
- Transferred to two international vaccine companies.

Pneumo
- Project funded by PATH.
- Development of processes for tech transfer to CDIBP.
- Fermentation and purification of 3 serotype.
- Conjugation of 3 serotypes.
- Test different protein carriers.
Influenza Project
WHO Technology Transfer Initiative

Objectives:

• Help developing countries to develop influenza vaccine manufacturing capabilities and capacity for pandemic readiness

• Help achieve sustainable influenza vaccine production capacity
Flu vaccine capacity lacking in Sub-Saharan African
Flu Project

<table>
<thead>
<tr>
<th>Immediate Objective</th>
<th>Longer term Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Source a technology transfer partner and supplier of formulated bulk</td>
<td>• Identify a relevant modern technology compatible with our capacity in order to allow antigen manufacture.</td>
</tr>
<tr>
<td>• Establish local capability for filling of both seasonal and pandemic influenza vaccine.</td>
<td></td>
</tr>
</tbody>
</table>
Capabilities

SA Capability
• Regulatory - MCC (a PIC/S member)
• Universities: Internationally recognised
• Clinical trial Infrastructure: well established
• A clear biotechnology mandate

Biovac capability
• GMP facilities for production ready in 2013
• GMP facilities for pilot scale manufacture
• Established cold chain capability
• Know-how in fermentation, conjugation platforms
In Summary: capability exists in Southern Africa!
Thank you