Engineering Conferences International ECI Digital Archives

CO2 Summit II: Technologies and Opportunities

Proceedings

Fall 4-11-2016

Iron-based chemical looping processes

Cheng Chung Ohio State University, chung.531@osu.edu

Liang-Shih Fan Ohio State University

Follow this and additional works at: http://dc.engconfintl.org/co2_summit2 Part of the <u>Environmental Engineering Commons</u>

Recommended Citation

Tong, Andrew, et al. "Iron-based syngas chemical looping process and coal-direct chemical looping process development at Ohio State University."Applied Energy 113 (2014): 1836-1845. Qin, Lang, et al. "Nanostructure formation mechanism and ion diffusion in iron-titanium composite materials with chemical looping redox reactions." Journal of Materials Chemistry A 3.21 (2015): 11302-11312.

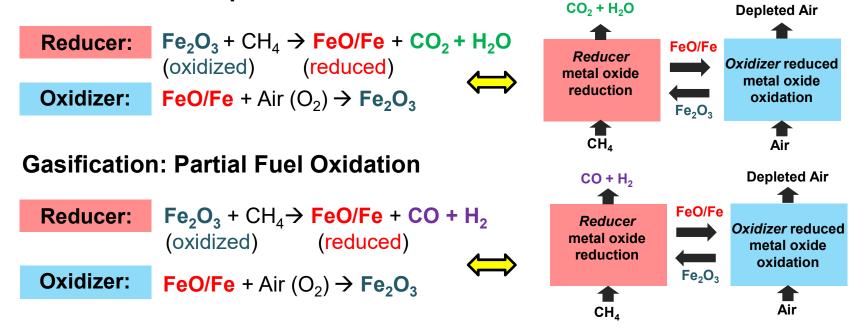
This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in CO2 Summit II: Technologies and Opportunities by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Iron-based Chemical Looping Processes

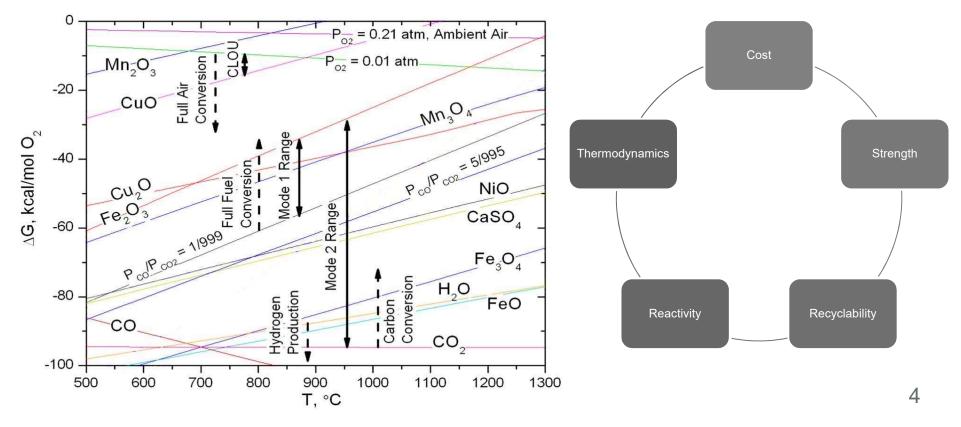
CO2 Summit II: Technologies and Opportunities

April 11th , 2016 Cheng Chung Graduate Research Assistant Advisor: Dr. Liang-Shih Fan

William G. Lowrie Department of Chemical and Biomolecular Engineering

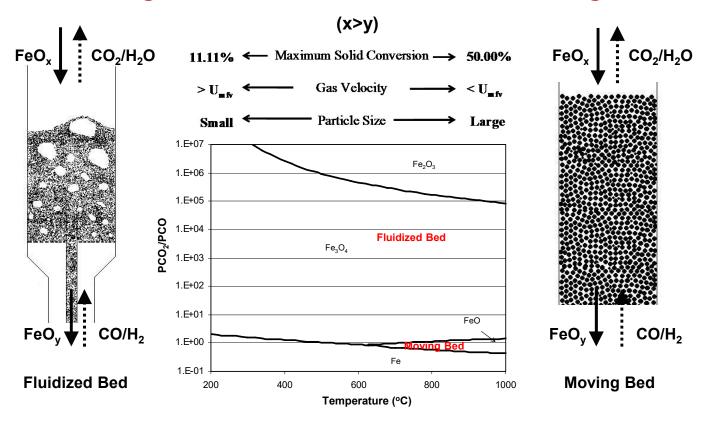

Outline

- Applications of chemical looping
- Oxygen carrier design criteria
- Moving-bed reactor design
- OSU chemical looping development
- Concluding remark

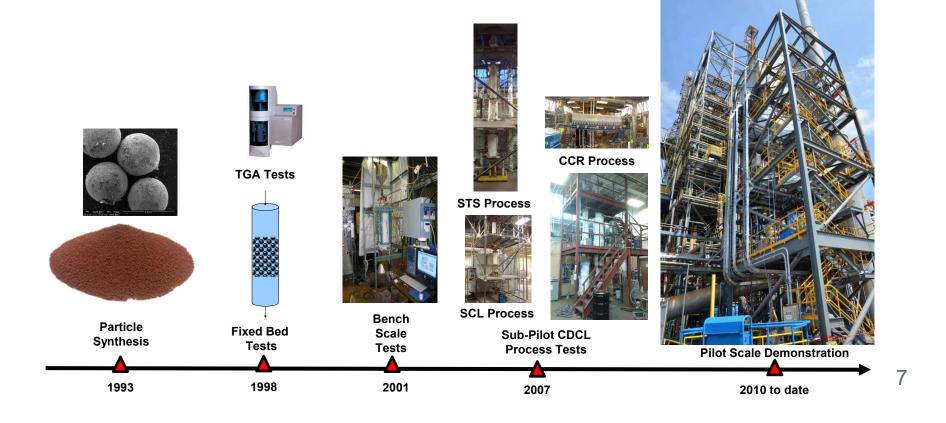


Applications of Chemical Looping

Combustion: Complete Fuel Oxidation


Oxygen Carrier Design Criteria

Cost Range (\$/kg) Oxygen Carrier Design Criteria


< \$1/kg Fe, K, Ca, Ti, Al, Ba, Na, Sr															2 He 4.0026 neon				
\$1/kg to \$10/kg Mn, Mg, Cu, Zn, Ce, Cd, Pb, Zr, Cr, La, Rb	3 Li 6.941 11 Na 22.990 potassium 19	4 Be 9.0122 magnesium 12 Mg 24.305 calcum 20		scandium 21	Itianum 22	vanadium 23	chromium 24	11 Kanganese 25	26	27	28	29	zine 30	5 B 10.811 13 AI 26.982 gallium 31	6 C 12.011 silicon 14 Si 28.086 germanium 32	7 N 14.007 phosphorus 15 P 30.974 arsenic 33	8 0 15,999 suffur 16 S 32,065 selenium 34	9 F 18,998 chlorine 17 CI 35,453 bromine 35	10 Ne 20,180 argon 18 Ar 39,948 kryplon 36
\$10/kg to \$100/kg	K 39.098 rubidium 37 Rb	Ca 40.078 strontium 38 Sr		Sc 44.956 yttrium 39 Y	Ti 47.867 zirconium 40 Zr	10 50.942 niobium 41 Nb	Cr 51.996 molybdenun 42 Mo	Mn ⁴³ Tc	Fe 44 Ru	Co ⁴⁵ Rh	Ni 46 Pd	Cu 47 Ag	Zn <u>65.39</u> cadmium 48 Cd	Ga 69.723 indium 49 In	Ge 72.61 50 Sn	As 74.922 antimony 51 Sb	54 Se 78.96 tellurium 52 Te	Br 79.904 iodine 53	50 Kr 83.80 xenon 54 Xe
Bi, Co, Hg, Sn, Ni, W, V, Li, Y, Nd, Gd	85.468 caesium 55 CS 132.91 francium 87	87.62 barium 56 Ba 137.33 radium 88	57-70 ★ 89-102	88.906 Iutetium 71 Lu 174.97 Iawrencium 103	91.224 hafnium 72 Hf 178.49 rutherfordium 104	92.906 tantalum 73 Ta 180.95 dubnium 105	95.94 tungsten 74 W 183.84 seaborgium 106	[98] rhenium 75 Re 186.21 bohrium 107	101.07 osmium 76 OS 190.23 hassium 108	102.91 iridium 77 Ir 192.22 meitnerium 109	106.42 platinum 78 Pt 195.08 ununnilium 110	107.87 gold 79 Au 196.97 unununium 111	112.41 mercury 80 Hg 200.59 ununbium 112	114.82 thailium 81 TI 204.38	118.71 lead 82 Pb 207.2 ununquadium 114	121 76 bismuth 83 Bi 208.98	127 60 potonium 84 PO 1209	126.90 astatine 85 At [210]	131.29 radon 86 Rn [222]
\$100/kg to \$1000/kg	Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	[268]	Uun [271]	Uuu [272]	Uub		Uuq				
Ga, In, Ag, Pr, Eu, Er	*Lant	hanide	series	Lannaron 57 La	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm	62 Sm 150.36	63 Eu 151.96	64 64 64 157.25	65 Tb 158.93	66 Dy 162,50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 70 Yb 173.04		
> \$1000/kg	**Actinide series			138.91 actinium 89 Ac	90 Th	Protactinium 91 Pa	uranium 92 U	^{neptunium} 93 Np	Plutonium 94 Pu	americium 95 Am	curium 96	berkelium 97	98 Cf	einsteinium 99 Es	fermium 100 Fm	mendeleviun 101	nobelium 102		
TI, Dy, Ir, Lu, Ho, Tm, Yt, Ru, Au, Pt, Pd, Rh, Ra, Po, Cs, Sc				[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]		

Reducer Design: Fluidized Bed vs Moving Bed

Evolution of OSU Chemical Looping Technology

OSU Chemical Looping Platform Technology

Coal Natural Gas Oil Petcoke Biomass Waste Syngas F-T light hydrocarbon Chemical Looping Combustion (CLC)

Driver

Chemical Looping Gasification (CLG)

Carbonation- Calcination Reaction (CCR)

Calcium Looping Process (CLP)

Direct Chemical Synthesis (with EcoCatalytic) CO₂ Capture/Emission Control

Electricity/heat

- Retrofit to PC
- New Plant
- Combined Cycle
- SOFC

Applications and Products

- Hydrogen
- CLG Syngas

Liquid fuel

- F-T Synthesis
- CO₂ Hydrogenation
- Olefins to Liquid Fuel Chemicals
- Olefins
- Ammonia

Oxygen Capacity g of 0/g of Metal Oxide

Cyclic

Redox of

Pure

Fe₂O₃

0 -2 -4 -6

-8 -10

-12 -14

-16

-18

-20 -22 -24

-26

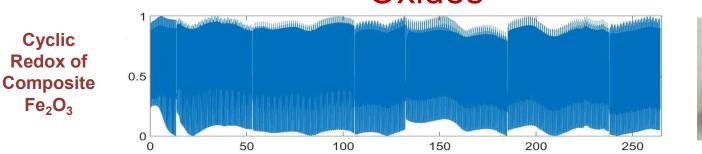
-28 -30

> 0 1

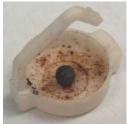
2

3

5 6 7 8


Recyclability of Metal Oxides and Composite Metal Oxides

Time (hr)


10

9

11 12 13

Before

After

1000 900

800

700

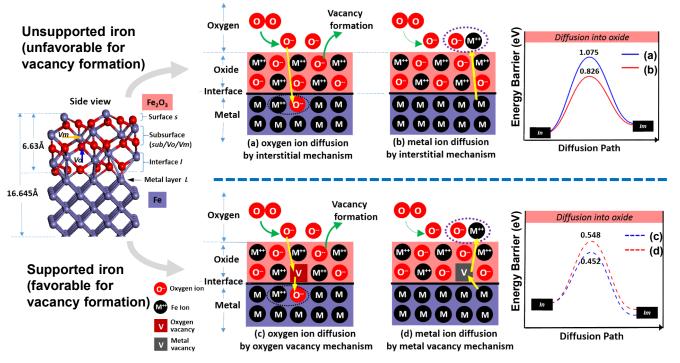
600

500

400

300

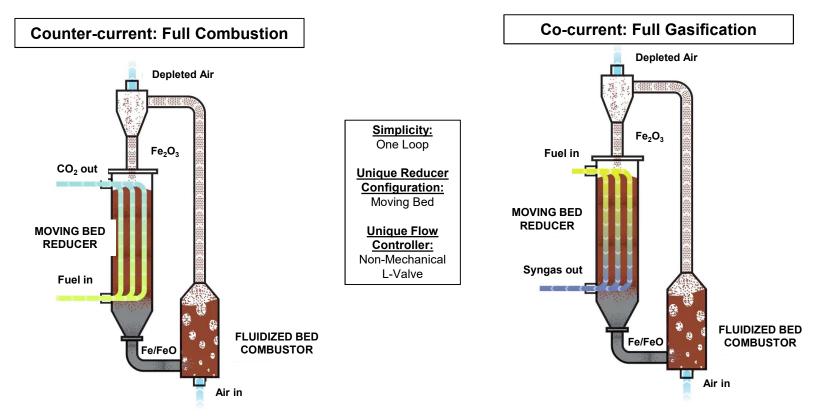
200


14

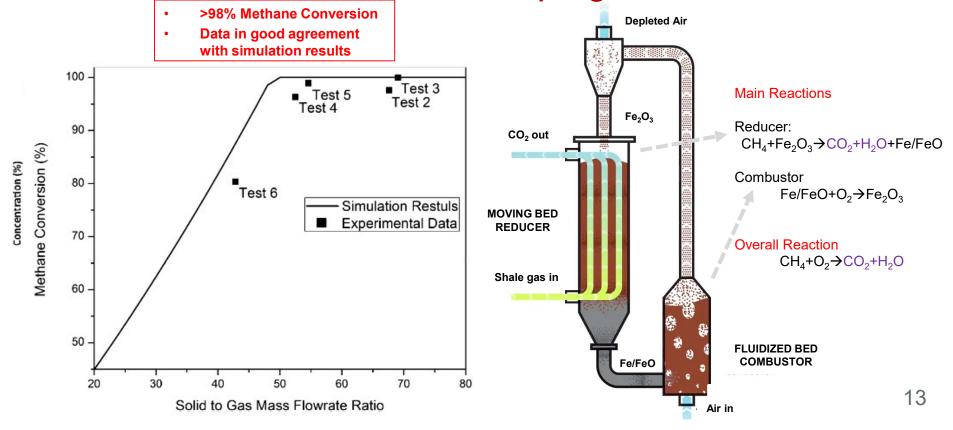
Temperature (°C)



Diffusion Mechanism

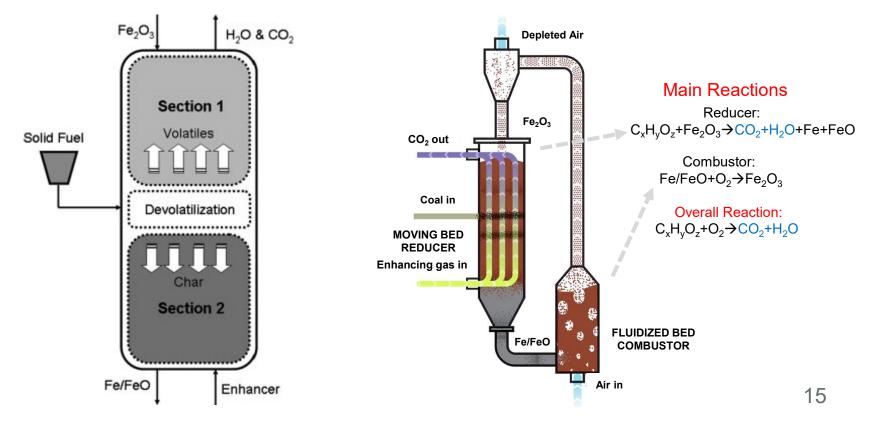

Oxygen Anion vs Iron Cation

Core-Shell Particle Formation

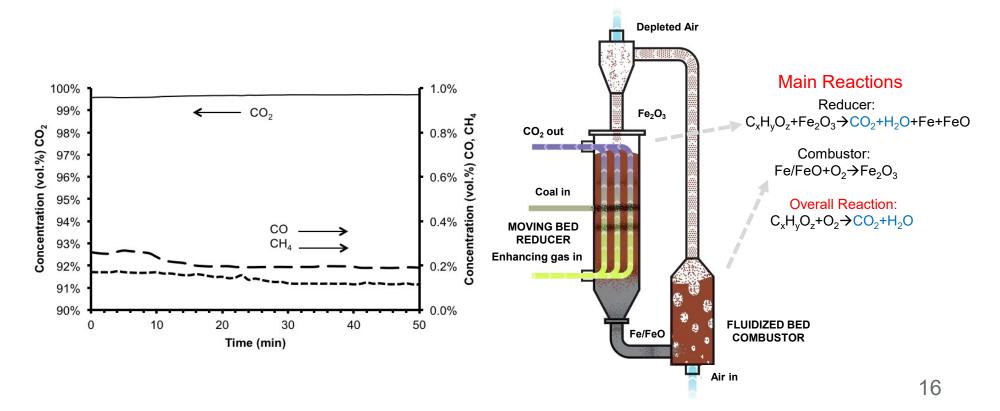


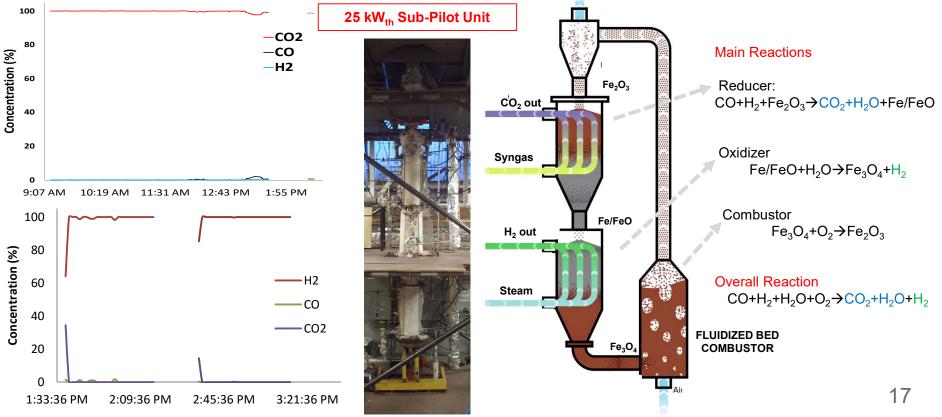
Chemical looping Combustion vs. Gasification

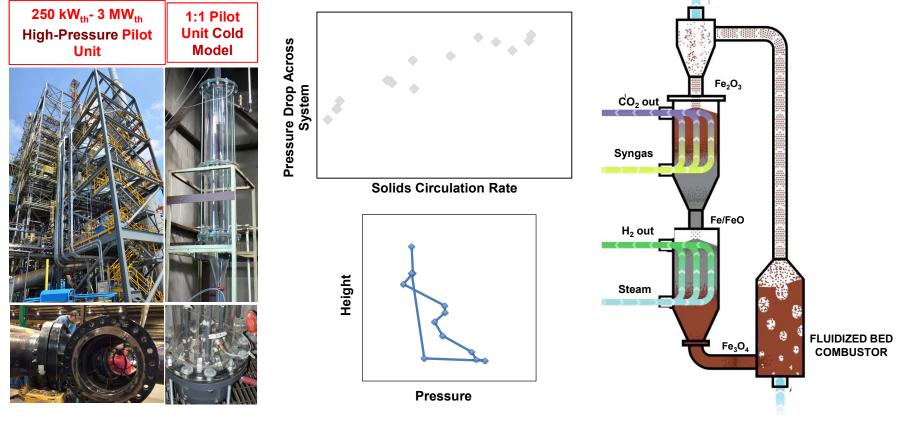
Shale Gas Chemical Looping Combustion



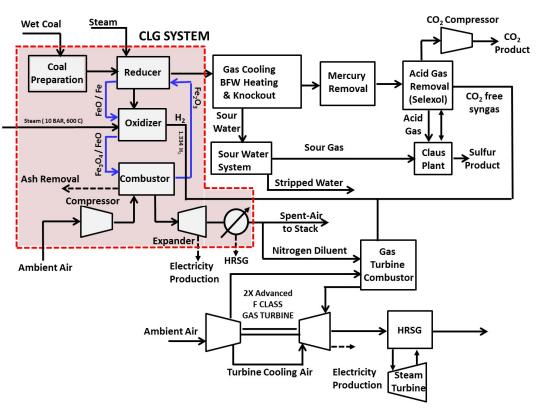
Coal-direct Chemical Looping Combustion

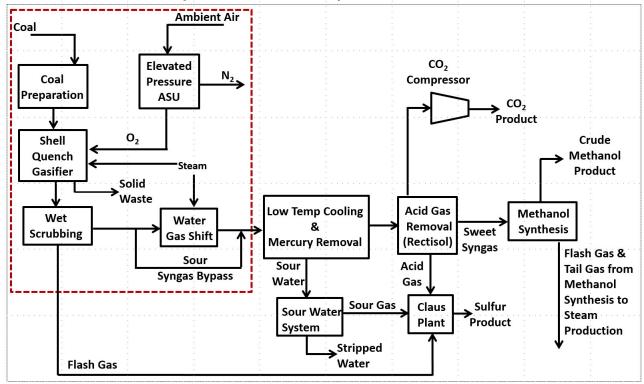



Coal-direct Chemical Looping Combustion

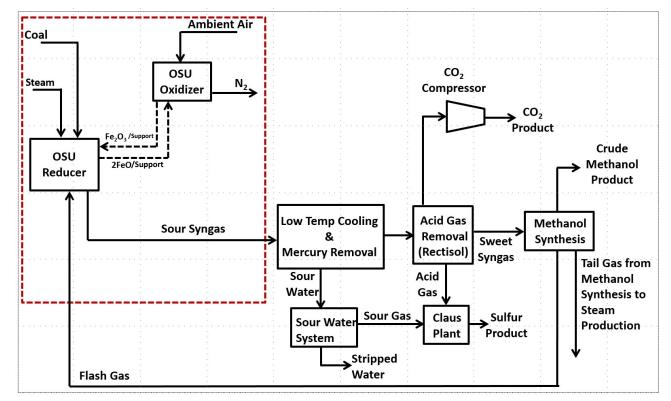

Coal-direct Chemical Looping Combustion

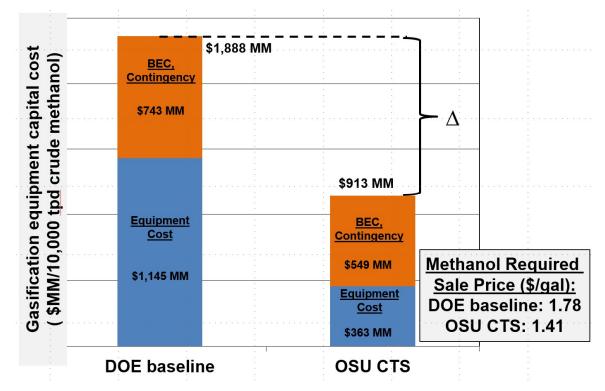
Chemical Looping Hydrogen Production Process


Chemical Looping Hydrogen Production Process



IGCC system with Chemical Looping Gasification


Preliminary economic analysis shows 16-20% decrease in FYCOE when compared with ASU/Gasifier technology with IGCC


Coal Gasification for Methanol Production: DOE Baseline (Traditional) Process

Coal Gasification for Methanol Production with Chemical Looping

Cost Analysis: Total Plant Capital Cost for 10,000 ton/day Methanol Production from Coal

Concluding Remarks

- The full potential of chemical looping technology is realized with the synergistic effect between oxygen carrier material and suitable reactor configuration
- It is highly tunable, and offers a wide range of opportunities in fossil fuel conversion
- Chemical looping process is compatible with existing technology and can offer significant cost-saving opportunities

Industrial Collaborators

WorleyParsons Group

Babcock & Wilcox Power Generation Group

Particulate Solid Research, Inc.

Test Site Host

National Carbon Capture Center

Sponsors

THE OHIO STATE UNIVERSITY U.S. Department of Energy (NETL and ARPA-E)

Ohio Development Services Agency

The Ohio State University

