Environmental assessment of light weighting solutions for automotive components: results, trade-off and challenges from real case studies

S. Maltese
Magneti Marelli S.p.A. – LCA PhD, Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, via Terracini 28 Bologna, Italy, silvia.maltese@external.magnetimarelli.com

L. Zanchi
Department of Industrial Engineering, University of Florence, via Santa Marta 3, 50139 Florence, Italy

M. Delogu
Department of Industrial Engineering, University of Florence, via Santa Marta 3, 50139 Florence, Italy

M. Pierini
Department of Industrial Engineering, University of Florence, via Santa Marta 3, 50139 Florence, Italy

R. Riccomagno
EH&S Central Team - Magneti Marelli SpA, viale Aldo Borletti, 20011, Corbetta (MI)

Follow this and additional works at: http://dc.engconfintl.org/lca_waste

Part of the Engineering Commons

Recommended Citation
Environmental assessment of light weighting solutions for automotive components: results, trade-off and challenges from real case studies

S. Maltese, L. Zanchi, R. Riccomagno, M. Delogu, M. Pierini

Cetraro, Italy, June, 6th, 2016

Silvia Maltese
Magneti Marelli SpA, LCA PhD
Summary

- Magneti Marelli SpA: Business line & Products
- Magneti Marelli Commitment for a Sustainability Development
- Magneti Marelli Products Portion of Incidence on a Vehicle
- Automotive Sector: Improvement Drivers From Environmental Perspective
- LCA: A Product-Oriented Method for Sustainability Analysis
- LCA Development Projects and Lightweigh Drivers
- LCA Projects: Alternative Technology for Product Manufacturing
- LCA Projects: Alternative Raw Materials
- LCA Projects: Alternative Technology and Raw Materials
- Results and Consideration
Magneti Marelli is an international Group committed to the design and production of hi-tech systems and components for the automotive sector.
Magneti Marelli Commitment for a Sustainability Development

Magneti Marelli is committed to develop its product with the aim of reducing the impact caused by the effect of its products on the environment.

Towards a Green Automotive Industry

- Technical Feasibility
- Performance characteristics
- Properties of eco compatibility

R&D Concept Design
Magneti Marelli Products Portion of Incidence on a Vehicle

<table>
<thead>
<tr>
<th>Component Type</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic Components</td>
<td>35 Kg</td>
</tr>
<tr>
<td>Automotive Lighting</td>
<td>10 – 12 Kg</td>
</tr>
<tr>
<td>Mechanical Control Systems</td>
<td>5 Kg</td>
</tr>
<tr>
<td>Powertrain</td>
<td>10 – 11 Kg</td>
</tr>
<tr>
<td>Exhaust Systems</td>
<td>20 Kg</td>
</tr>
<tr>
<td>Shock Absorbers</td>
<td>20 Kg</td>
</tr>
<tr>
<td>Suspension Systems</td>
<td>60 Kg</td>
</tr>
</tbody>
</table>

If all the components of a midsize vehicle were produced by Magneti Marelli, therefore the total contribution would be **170 kg weight**.
Automotive Sector: Improvement Drivers from Environmental Perspective

Reduction of exploitation of fuel consumptions

Lightweighting

Reduction of Green Greenhouse Gas Emissions (GHG)

Case study highlight on a bulk component: crossmember

<table>
<thead>
<tr>
<th>Material</th>
<th>Weight reduction</th>
<th>GWP$_{100}$ reduction over lifetime of 150000 km</th>
<th>Fuel Consumption over lifetime of 150000 km (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium</td>
<td>-18%</td>
<td>-19%</td>
<td>-19%</td>
</tr>
<tr>
<td>Plastic Composite</td>
<td>51%</td>
<td>51%</td>
<td>51%</td>
</tr>
</tbody>
</table>

Graph showing:
- GWP$_{100}$ over lifetime of 150000 km for Steel, Aluminium, and Composite materials.
- Fuel consumption over lifetime of 150000 km for Aluminium and Plastic Composite materials.

Graph indicates:
- Steel has the highest GWP$_{100}$ over lifetime and fuel consumption compared to Aluminium and Plastic Composite.
- Aluminium and Plastic Composite show significant weight reduction with comparable GWP$_{100}$ and fuel consumption reductions.

- Steel: GWP$_{100}$ increases with distance.
- Aluminium: GWP$_{100}$ and fuel consumption decrease with distance.
- Plastic Composite: GWP$_{100}$ and fuel consumption decrease with distance, showing improved sustainability over lifetime.
LCA: A Product-Oriented Method for Sustainability Analysis

LCA System Boundaries: «Cradle to Grave» approach

LCA Impact categories: CML 2001 – April ‘15

<table>
<thead>
<tr>
<th>INPUT:</th>
<th>OUTPUT:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abiotic Depletion Elements (ADP elements) [kg Sb-Equiv]</td>
<td>Global Warming Potential (GWP 100 years) [kg CO2-Equiv.]</td>
</tr>
<tr>
<td>Abiotic Depletion Fossils (ADP fossils) [MJ]</td>
<td>Acidification Potential AP) [kg SO2-Equiv.]</td>
</tr>
<tr>
<td></td>
<td>Eutrofication Potential (EP) [kg Phosphate-Equiv.]</td>
</tr>
<tr>
<td></td>
<td>Ozone Depletion Potential (ODP, catalytic) [kg R11-Equiv.]</td>
</tr>
<tr>
<td></td>
<td>Freshwater Aquatic Ecotoxicity Potential (FAETP) [kg DCB-Equiv.]</td>
</tr>
<tr>
<td></td>
<td>Human Toxicity Potential (HTP) [kg DCB-Equiv.]</td>
</tr>
<tr>
<td></td>
<td>Marine Aquatic Ecotoxicity Potential (MAETP) [kg DCB-Equiv.]</td>
</tr>
<tr>
<td></td>
<td>Photochemical Ozone Creation Potential (POCP) [kg Ethene-Equiv.]</td>
</tr>
<tr>
<td></td>
<td>Terrestrial Ecotoxicity Potential (TETP) [kg DCB-Equiv.]</td>
</tr>
</tbody>
</table>

✓ Primary energy demand from renewable and non renewable resources (gross cal. value) [MJ]
LCA Development Projects and Lightweigh Drivers

Choice of materials...

Production Technology
Materials Substitution
Production Technology and Materials Substitution

Economic constraints
Technological Constraints
Material Properties
LCA Projects: Alternative Technology for Product Manufacturing

2K Fuel Tank

Extrusion Blow-molding VS Injection (Weight reduction -33%)

Results

- Global Warming Potential (GWP 100 years) [kg CO2-Equiv.]
- Abiotic Depletion (ADP elements) [kg Sb-Equiv.]
- Primary energy demand from ren. and non ren. resources (gross cal. value) [MJ]
- Ozone Layer Depletion Potential (ODP) [kg R11-Equiv.]
LCA Projects: Alternative Raw Materials

Dashboard

PP + Talcum VS PP + Hollow Glass Spheres (Weight reduction -30%)

Results

Global Warming Potential (GWP 100 years) [kg CO2-Equiv.]

Abiotic Depletion (ADP elements) [kg Sb- Equiv.]
LCA Projects: Alternative Technology and Raw Materials

Throttle Body Housing

Secondary Aluminum (Die Casting) VS PET+ Glass Fibers (Injection Moulding)

(Weight reduction -22%)

Results

- **Global Warming Potential (GWP 100 years)**
 - [kg CO2-Equiv.]
 - Raw Material
 - Transport
 - Manufacturing
 - Use Phase
 - Total

- **Marine Aquatic Ecotoxicity Pot. (MAETP)**
 - [kg DCB-Equiv.]
 - Raw Material
 - Transport
 - Manufacturing
 - Use Phase
 - Total

- **Primary energy demand from ren. and non ren. resources**
 - (gross cal. value) [MJ]
 - Raw Material
 - Transport
 - Manufacturing
 - Use Phase
 - Total
Vehicle End of Life process flowchart: ISO 22628:2002

«What are the material implication associated with the vehicle weight reduction on ELV treatments?»

Material’s typology affect process efficiencies and hence their recoverability expressed in % of mass fraction through the following indices:

\[
R_{\text{cyc}} (%) = \frac{m_p + m_D + m_M + m_{Tr}}{m_{tot}} \times 100
\]

\[
R_{\text{cov}} (%) = \frac{m_p + m_D + m_M + m_{Tr} + m_{Te}}{m_{tot}} \times 100
\]
Results and Consideration

Lightweighting approach significantly reduces the environmental impacts during the **products** utilization on vehicle

But ...

Light weight materials (fillers for plastic compound), could worsen the effect on Raw Materials Impact

Reduce the quantity of impacting plastic filler or replace with less impacting filler

Balance between...

Raw Materials and **Use Phase** account for ~ 90% portion of incidence on life cycle total impact

Replace **Virgin Materials** with **Recycled**

Consider Product End of Life Recovery and Reuse
Thank you for your attention

Silvia Maltese
Magneti Marelli SpA, LCA PhD
Email contact: silvia.maltese@external.magnetimarelli.com