Investigation of innovative and conventional pyrolysis of ligneous and herbaceous biomasses for biochar production

Marina Morando
Politecnico di Torino, Italy

Silvia Fiore
Politecnico di Torino, Italy

Cedric Briens
ICFAR, Western University, Canada

Franco Berruti
ICFAR, Western University, Canada

Follow this and additional works at: http://dc.engconfintl.org/biochar

Part of the [Engineering Commons](http://dc.engconfintl.org/biochar)

Recommended Citation

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Biochar: Production, Characterization and Applications by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
INVESTIGATION OF INNOVATIVE AND CONVENTIONAL PYROLYSIS OF LIGNEOUS AND HERBACEOUS BIOMASSES FOR BIOCHAR PRODUCTION

Silvia Fiore¹, Marina Morando¹, Cedric Briens², Franco Berruti²
¹DIATI, Politecnico di Torino, Italy
²ICFAR, Western University, Canada
PYROLYSIS AS A TERMOCHEMICAL PROCESS

- BIOMASS
- PYROLYSIS
- GAS
- BIO-OIL
- BIO-CHAR
PYROLYSIS: SLOW OR FAST?

<table>
<thead>
<tr>
<th></th>
<th>SLOW PYROLYSIS</th>
<th>FAST PYROLYSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>heating rate</td>
<td><10 (°C/min)</td>
<td>>100(°C/s)</td>
</tr>
<tr>
<td>Temperature range (°C)</td>
<td>400-800</td>
<td>450-550</td>
</tr>
<tr>
<td>vapor residence time</td>
<td>minutes</td>
<td><2 s</td>
</tr>
<tr>
<td>solid residence time</td>
<td>hours</td>
<td>seconds</td>
</tr>
<tr>
<td>bio-oil yield (%)</td>
<td>≈ 30</td>
<td>≈ 60-75</td>
</tr>
<tr>
<td>bio-char yield (%)</td>
<td>≈ 30</td>
<td>≈ 15-25</td>
</tr>
<tr>
<td>gas yield (%)</td>
<td>≈ 35</td>
<td>≈ 15</td>
</tr>
<tr>
<td>typical reactor configuration</td>
<td>fixed bed, kilns, auger</td>
<td>fluidized and circulating fluidized bed, ablative, vacuum</td>
</tr>
</tbody>
</table>
APPROACH and AIM OF THE RESEARCH

- FEEDSTOCK
 (herbaceous vs ligneous biomasses)

- REACTOR DESIGN

- PYROLYSIS PROCESS
 (slow vs fast)

production of ACTIVATED BIOCHAR
FEEDSTOCKS

ligneous

a. RUBBERWOOD
b. EUCALYPTUS

erbaceous

c. PHRAGMITES AUSTRALIS
REACTORS DESIGN: slow vs fast pyrolysis

1. Mechanically Fluidized Reactor (MFR)
2. Bubbling Bed Reactor (BBR)
3. Jiggled Bed Reactor (JBR)
Figure 2.2- Sequence of mixing during a) downward actuator retraction, b) upward actuator extension (Latifi, 2012)
METHODOLOGY: PYROLYSIS

- Rubberwood
- Eucalyptus
- Phragmites

- MFR 550 °C
 - Rubberwood char
 - Eucalyptus char
 - Phragmites char

- BBR 500 °C
 - Rubberwood char
 - Eucalyptus char
 - Phragmites char

- JBR 500 °C
 - Rubberwood char
 - Eucalyptus char
 - Phragmites char
METHODOLOGY: BIOCHAR ACTIVATION

Figure 3 Reactions occurring within a char particle during activation [23]
JBR OPERATING CONDITIONS

Pyrolysis and activation - JBR

- Reactor temperature [°C]
- Time [min]
- 0°C to 900°C
- 0 min to 80 min

- pyrolysis
- activation
- cooling

Gas flow rate [ml/min]

- N₂
- CO₂

Biochar

Activated biochar
RESULTS: BIOMASSES CHARACTERIZATION AND YIELDS

<table>
<thead>
<tr>
<th>Moisture content [%]</th>
<th>Proximate analysis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VOC [%]</td>
<td>Fixed carbon [%]</td>
</tr>
<tr>
<td>Rubberwood</td>
<td>5.9</td>
<td>19.4</td>
</tr>
<tr>
<td>Eucalyptus</td>
<td>9.1</td>
<td>26.2</td>
</tr>
<tr>
<td>Phragmites</td>
<td>9.0</td>
<td>31.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAR YIELDS [%]</th>
<th>BBR</th>
<th>MFR</th>
<th>JBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus</td>
<td>22.8</td>
<td>22.4</td>
<td>23.8</td>
</tr>
<tr>
<td>Phragmites</td>
<td>27.9</td>
<td>34.5</td>
<td>26.9</td>
</tr>
<tr>
<td>Rubberwood</td>
<td>20.9</td>
<td>18.4</td>
<td>23.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACTIVATED CARBON YIELDS [%]</th>
<th>BBR</th>
<th>MFR</th>
<th>JBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eucalyptus</td>
<td>71.1</td>
<td>72.8</td>
<td>95.5</td>
</tr>
<tr>
<td>Phragmites</td>
<td>68.3</td>
<td>77.3</td>
<td>98.2</td>
</tr>
<tr>
<td>Rubberwood</td>
<td>75.8</td>
<td>84.7</td>
<td>87.2</td>
</tr>
</tbody>
</table>
RESULTS: ELEMENTAL ANALYSIS

Evolution of carbon

Evolution of nitrogen

Evolution of hydrogen

Evolution of oxygen

DRIED BIOMASS BIO-CHAR ACTIVATED CARBON

DRIED BIOMASS BIO-CHAR ACTIVATED CARBON

BBR MFR JBR

Eucalyptus Phragmites Rubberwood
RESULTS: BET ANALYSIS (PHRAGMITES)

<table>
<thead>
<tr>
<th>Char</th>
<th>BET surface area [m²/g]</th>
<th>t-Plot micropore area [m²/g]</th>
<th>t-Plot micropore volume [cm³/g]</th>
<th>Adsorption average pore width [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFR</td>
<td>63,59</td>
<td>57,07</td>
<td>0,03</td>
<td>17,31</td>
</tr>
<tr>
<td>BBR</td>
<td>2,11</td>
<td>1,83</td>
<td>0,00</td>
<td>66,84</td>
</tr>
<tr>
<td>JBR</td>
<td>73,32</td>
<td>75,31</td>
<td>0,03</td>
<td>16,09</td>
</tr>
<tr>
<td>Activated Carbon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MFR</td>
<td>308,59</td>
<td>292,50</td>
<td>0,14</td>
<td>17,52</td>
</tr>
<tr>
<td>BBR</td>
<td>368,83</td>
<td>247,95</td>
<td>0,11</td>
<td>22,48</td>
</tr>
<tr>
<td>JBR</td>
<td>385,24</td>
<td>283,02</td>
<td>0,13</td>
<td>20,82</td>
</tr>
</tbody>
</table>

![Adsorption isotherms graph](image)
RESULTS: SEM IMAGES
CONCLUSIONS

• JBR is an **effective** reactor to **simulate different technologies**, to **optimize process conditions** and to **test activation processes** on different biomasses;

• JBR is a **valid alternative to conventional reactors** for the experimental investigation of biochar production;

• *Phragmites australis* showed an **interesting potential** as biochar and activated carbon feedstock, analogous to conventional ligneous biomasses.

Further research is necessary to investigate:

• the **optimization of biochar production and activation** to enhance micropore area;

• the **adsorption capacity** of the produced activated carbons towards organic and inorganic pollutants.