Cryogenic carbon capture

Larry Baxter
Sustainable Energy Solutions, lbaxter@sesinnovation.com

Andrew Baxter
Sustainable Energy Solutions

Chris Bence
Sustainable Energy Solutions

David Frankman
Sustainable Energy Solutions

Chris Hoeger
Sustainable Energy Solutions

See next page for additional authors

Follow this and additional works at: http://dc.engconfintl.org/co2_summit2

Part of the Environmental Engineering Commons

Recommended Citation
Authors
Larry Baxter, Andrew Baxter, Chris Bence, David Frankman, Chris Hoeger, Aaron Sayre, Kyler Stitt, and Skyler Chamberlain

This abstract and presentation is available at ECI Digital Archives: http://dc.engconfintl.org/co2_summit2/12
Cryogenic Carbon Capture

Larry Baxter
Brigham Young University / Sustainable Energy Solutions
Provo/Orem, UT
Outline

• Cryogenic Carbon Capture™ (CCC) Overview
• Status and Highlights of Recent Tests
• CCC Enabling Low-CO₂ Fossil Systems, Renewables, Energy Storage, and Grid Stability
An Optimistic Message

Cryogenic Carbon Capture™ (CCC) represents a promising pathway for global CO₂ reduction with minimal cost and energy consumption. CCC addresses the largest issues in both fossil and renewable energy. CCC reduces fossil CO₂ emissions and reliably stores renewable energy. It is a realistic pathway to achieving a 2 °C global temperature rise.
CCC Value Proposition

- Energy efficient CO\(_2\) capture (about ½ amine)
- Cost effective CO\(_2\) capture (about ½ amine)
- Enables adoption of renewables through rapidly responding, large-scale energy storage
- Bolt-on technology (ideal retrofit or greenfield)
- Widely deployable (NG, refineries, coal ...)
- Multipollutant process (Hg, SO\(_x\), HC, PM\(_{2.5}\), ...)
- Consumes no additional water
Completed Skid-scale Demonstrations

- **Fuels**
 - Coals (subbituminous and bituminous)
 - Natural gas
 - Biomass
 - Municipal waste, tires
- **Technologies**
 - Utility power plants
 - Industrial heat plants
 - Cement plant kilns
 - Large pilot-scale reactor
- **Pre-combustion/NG Processing (lab scale)**
Simplified Flow Diagram (ECL)
ASU Comparisons

ASU
- Energy Demand: Small
- Heat Exchange
- LP Distillation
- HP Distillation
- Utilization
- Compression

CCC
- Energy Demand: Smaller
- Utilization
- Heat Exchange
- LP Distillation
- HP Distillation
- None
- Compression

Very Small
Basic Principles

ΔT_1 suffices to drive a process that produces a product near its initial temperature – far less cooling than a traditional refrigeration cycle requires.

ΔT_2 corresponds to traditional refrigeration
Energy Demand at High Capture

- 100% coal-derived CO2 capture
- 1% CO2 in flue gas
Actual Gas Temperature Profiles

Flow Direction

Temperature, K

Flue Gas Cooling, Desublimating

Separate N2, CO2 Streams Warming
Utility Power Plant Skid Test
Wyoming Skid Photos

1 tonne/day CO$_2$ capture
Utility Power plant

Steady-state, continuous CO$_2$ removal

CO$_2$ Capture %

Hours
Pollutant Removal

- NO - Captured at very high rates, likely reacted to NO₂
Pollutant Capture Data

Graph showing SO₂ Capture Percent over time (in minutes) and the percentage of CO₂ and SO₂ removed. The graph indicates fluctuations in removal percentages over time, with a trend line for CO₂ and SO₂ removal.
Particulate Capture

Relative particle concentration

- \(\text{PM}_{2.5} \)
- \(\text{PM}_{4} \)
- \(\text{PM}_{7} \)
- \(\text{PM}_{10} \)
Mercury Testing

- Field test at utility power plant
- Inlet 735 ppt, or 5.77 µg/m³ (after wet scrubber)
- Outlet below detection limit, which is 1 ppt, or 0.01 µg/m³ for 99.9%+ capture.
- Actual concentrations predicted to be far below atmospheric levels (1-2 ng/m³).
CCC nearly eliminates emissions while consuming half the energy of alternatives.
<table>
<thead>
<tr>
<th></th>
<th>No Capture</th>
<th>Amine</th>
<th>CCC</th>
<th>Integrated CCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net Power (GJ/tonne CO₂)</td>
<td>0</td>
<td>1.38</td>
<td>0.714</td>
<td>0.555</td>
</tr>
<tr>
<td>Net HHV Heat Rate (BTU/kWh)</td>
<td>8687</td>
<td>12002</td>
<td>10144</td>
<td>9776</td>
</tr>
<tr>
<td>Parasitic Load</td>
<td>0.00%</td>
<td>27.6%</td>
<td>14.4%</td>
<td>11.1%</td>
</tr>
</tbody>
</table>
Cost of Electricity

![Cost of Electricity Diagram](image)

- **NETL Case 12 (Amine)**
- **CCC CFG**
- **CFG Integrated**
- **CCC ECL**
- **ECL Integration**

Legend:
- Capital
- Fuel
- Fixed O&M
- Variable O&M
- TS&M
Retrofit Costs
Energy Storage

• Grid-scale energy storage
 – Intermittent renewable sources
 – Load leveling
 – High efficiency (95%+)
 – Low cost
CCC ECL Energy Consumption by Source

<table>
<thead>
<tr>
<th>Energy Source</th>
<th>Percent of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flue Gas Blower</td>
<td>11.6%</td>
</tr>
<tr>
<td>Refrigerant Compression</td>
<td>83.0%</td>
</tr>
<tr>
<td>Separations Compression</td>
<td>2.1%</td>
</tr>
<tr>
<td>Condensed-phase Pumping</td>
<td>3.3%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>
Diverse Power Sources

Graph showing power generation from various sources over time.

- Coal power (MW)
- Total power (MW)
- Total electricity demand (MW)
- Wind power (MW)
- Gas power (MW)
- Power from natural gas combined cycle (MW)
- Residential demand (MW)
Actual Supply Curve

Power supply curve
NERC region: Southeastern Electric Reliability Council
Year: 2010

Source: Deloitte Center for Energy Solutions & Deloitte MarketPoint, Made in America: The economic impact of LNG exports from the United States, Jan. 25, 2013
Results

• An 800 MW_e power plant with CCC stabilized +/- 400 MW_e grid surges associated with periodic demand cycles and intermittent renewable availability with no need for spinning reserves or other supplementary power.

• Power demand cycles, wind availability, and general costs taken from actual grid data (southern California).

• 250 MW_e surge in wind power that occurs in the evening, as power demand generally is in rapid decrease, was effective absorbed by CCC and delivered the next day during peak power.

• Similar load following with coal being constant is possible, but requires larger storage tank and NG replacement rate.
Integrated System
Pilot Facility

100 tonne/day, 5 MWₑ pilot system
Acknowledgements

• Wyoming Advanced Conversion Technologies Task Force funding, DOE/Arpa-E, CCEMC, GE, Air Liquide, Dong Energy, and BYU

• Dave Frankman and Kyler Stitt are engineering managers. Substantial contributions from all SES team members

• Power plants, cement plants, and other host facilities

• Details at www.sesinnovation.com