“BIO”CATALYSIS FOR ENERGY: ENZYMES, ARTIFICIAL ENZYMES AND BIOINSPIRED CATALYTS

Marc Fontecave, Collège de France, Paris
mfontecave@cea.fr

Key Words: water splitting; hydrogenases; artificial enzymes; bioinspired chemistry.

New technologies for storing solar or electrical energy are crucial for the energetic transition. An attractive scenario consists in the conversion of renewable energies into chemical energy, via water splitting into hydrogen and oxygen. Hydrogenases are the most active molecular catalysts for hydrogen production and uptake on earth and are thus extensively studied with respect to their technological exploitation in order to replace noble metals (such as platinum) within (photo) electrolysers and fuel cells. Because these enzymes suffer from a number of drawbacks, in parallel, bioinspired catalysts and artificial hydrogenases are being extensively developed. Here we present our efforts in: (i) engineering hydrogenases and their maturases; (ii) developing bioinspired molecular cobalt-, iron-, molybdenum and nickel-based molecular catalysts; (iii) developing bioinspired heterogeneous electrode materials for water splitting; (iii) developing artificial systems based on the combination of molecular complexes with well-designed protein scaffolds.

References:
- Biomimetic assembly and activation of [FeFe]-hydrogenases
- Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic
- Artificial hydrogenases: biohybrid and supramolecular systems for catalytic hydrogen production or uptake
 G. Caserta, S. Roy, M. Atta, V. Artero, M. Fontecave
- Mimicking Hydrogenases: from Biomimetics to Artificial Enzymes
 T. R. Simmons, G. Berggren, M. Bacchi, M. Fontecave, V. Artero
- A bio-inspired Molybdenum Complex as a Catalyst for the Photo- and Electrocatalytic Reduction of Protons
 Angew. Chem. Int. Ed. 2015, 54, 14090-14093
- Artificial Hydrogenases based on Cobaloximes and Heme Oxygenase
 ChemPlusChem 2016, 81, 1083-1089
- Chemical assembly of multiple cofactors: the heterologously expressed multidomain [FeFe]-hydrogenase from Megasphaera elsdenii.
- The [FeFe]-hydrogenase maturation protein HydF : Structural and Functional Characterization