New Development in Dihydrate -Hemihydrate processes: The new Prayon DA-HF process

Tibaut Theys

Prayon

Follow this and additional works at: http://dc.engconfintl.org/phosphates_vii

Part of the Materials Science and Engineering Commons

Recommended Citation

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Beneficiation of Phosphates VII by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
New Development in Dihydrate - Hemihydrate processes: The new Prayon DA-HF process
Contents

1. Introduction
2. CPP process
3. DA-HF process
4. DH plant conversion
5. Conclusion
Introduction

\[
[\text{Ca}_3(\text{PO}_4)_2] + 3 \text{H}_2\text{SO}_4 + x \text{H}_2\text{O}
\]

3 \(\text{CaSO}_4 \cdot 2 \text{H}_2\text{O} + 2 \text{H}_3\text{PO}_4 + \text{heat}\)

or

3 \(\text{CaSO}_4 \cdot 1/2 \text{H}_2\text{O} + 2 \text{H}_3\text{PO}_4 + \text{heat}\)

<table>
<thead>
<tr>
<th>Single Crystal</th>
<th>Double crystal Single filter</th>
<th>Double crystal Double filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dihydrate (DH)</td>
<td>Di attack – Hemi Filtration (DA-HF)</td>
<td>Dihydrate-Hemihydrate (CPP)</td>
</tr>
<tr>
<td>Hemihydrate (HH)</td>
<td>Hemi Re-Crystalisation (HRC)</td>
<td>Hemihydrate-Dihydrate (HH-DH)</td>
</tr>
</tbody>
</table>

From P. Becker, Phosphates and phosphoric acid
Introduction

• Plant revamping
 • Double crystal processes considered
 • Profitability limited by investment level
 • Extra filtration;
 • Extra conversion / crystallisation
• Prayon invests in R&D to improve plant efficiency and profitability
• One high newcomer: DA-HF process
From DH to CPP process

• 40 years ago
• Double crystal process
• Gypsum sealable
• Stacking issue solved
• 90% of gypsum sold
Dihydrate Process

Typical P$_2$O$_5$ Yield : 95%

- Phosphate
- H$_2$SO$_4$ 98%
- Recycled acid
- Attack
- Digestion
- Phos acid 28% P$_2$O$_5$
- Water
- Filter
- Dihydrate

- Typical
- 28% P$_2$O$_5$
- 2,5% SO$_3$
Dihydrate Process

H₂SO₄ 98%

Phosphate

Recycled acid

Attack
Digestion

Phos acid

Filter

Water

Dihydrate
Stability regions of CaSO$_4$ hydrates

From P. Becker, Phosphates and phosphoric acid
Central-Prayon Process

Typical P_2O_5 Yield: 98%

- H_2SO_4 98%
- Phosphate
- Recycled acid
- Attack
- Digestion
- Phos acid 32% P_2O_5
- Conversion
- DIHYDRATE
- Typical 32-35% P_2O_5
- 1% SO_3
- HEMIHYDRATE
- Typical 28% P_2O_5
- 8% SO_3

Steam

Filter

Water

Hemi
• Advantages with respect to DH
 - P2O5 Recovery higher than 98%
 - Acid strength 32% \(P_2O_5 \) or higher
 - Dry gypsum obtained after rehydration

• Disadvantages with respect to DH
 - Higher capital cost (extra filter and conversion tank)
 - More complex operation
 - Somewhat higher maintenance costs
Looking for a New Process route:

Di Attack – Hemi Filtration

- **Phosphate**
 - **H$_2$SO$_4$ 98%**
 - **Recycled acid**

- **Conversion**
 - **Steam**

- **Filter**
 - **Water**
 - **Hemihydrate**

- **Hemi Filtration**
 - **28% P$_2$O$_5$$\rightarrow$ 32-36% P$_2$O$_5$$\rightarrow$ 8% SO$_3$$\rightarrow$ 3% SO$_3$
The DH – HH conversion limits
The DH –HH conversion limits

At very low sulfate content (0.2-0.4% sulphate)
Looking for a New Process route:

Di Attack – Hemi Filtration

- **Phosphate**
 - H_2SO_4 98%

- **Recycled acid**

- **Conversion**

- **Steam**

- **Filter**

- **Hemihydrate**

- **Hemi Filtration**
 - 28% P_2O_5
 - 8% SO_3
 - 32-36% P_2O_5
 - 3% SO_3
Pilot tests

Several rocks tested successfully
- Morocco, Syrian, Jordan, Kola, Egypt...

e.g. Syrian rock

Rock analyses

- 28.3 % P$_2$O$_5$,
- 47.9 % CaO,
- 3 % F,
- 6.8 % CO$_2$,
Pilot test with Syrian rock

<table>
<thead>
<tr>
<th>Elements</th>
<th>Unit</th>
<th>Phosphate Rock</th>
<th>Gypsum (250°C basis)</th>
<th>Acid C2</th>
<th>Hémihydrate (250°C basis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2O5T</td>
<td>% w/w</td>
<td>28,3</td>
<td></td>
<td>36,08</td>
<td>0,2</td>
</tr>
<tr>
<td>P2O5UN</td>
<td>% w/w</td>
<td>0,07</td>
<td></td>
<td>0,11</td>
<td></td>
</tr>
<tr>
<td>P2O5 CO</td>
<td>% w/w</td>
<td>1,57</td>
<td></td>
<td>0,09</td>
<td></td>
</tr>
<tr>
<td>% SO3</td>
<td>% w/w</td>
<td></td>
<td>3,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crystal water</td>
<td>% w/w</td>
<td>19,60</td>
<td></td>
<td>6,23</td>
<td></td>
</tr>
<tr>
<td>Efficiency</td>
<td>%</td>
<td></td>
<td></td>
<td>99%</td>
<td></td>
</tr>
<tr>
<td>Filtrability</td>
<td>tpdP2O5/m² (cycle 180s)</td>
<td></td>
<td></td>
<td>5,99</td>
<td></td>
</tr>
</tbody>
</table>
For these conditions:

the P$_2$O$_5$ process recovery is > 2% higher than DH
the filtration rate is about 20% - 30% better than DH
• Nominal capacity: 150 tpd \(\text{P}_2\text{O}_5 \)
• 4 compartments 225 m³
• Slurry cooled by flash cooler
• Filter: 40 m² useful – dry discharge
Industrial Test Design

Plant design – DA-HF
Test Results

- Quality of acid and gypsum
- Calcium sulphate filterability
- Efficiency
- Plant operation
Test Results - Analyses with Moroccan Rock

<table>
<thead>
<tr>
<th>Elements</th>
<th>Unit</th>
<th>Rock Morocco</th>
<th>Acid DH</th>
<th>Gypsum (250°C basis)</th>
<th>Acid HH</th>
<th>Hemihydrate (250°C basis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_2O_5 WS</td>
<td>% w/w</td>
<td>30.7</td>
<td>37.4</td>
<td>32.85</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>P_2O_5 UN</td>
<td>% w/w</td>
<td></td>
<td></td>
<td>1.42</td>
<td></td>
<td>0.11</td>
</tr>
<tr>
<td>P_2O_5 CO</td>
<td>% w/w</td>
<td></td>
<td></td>
<td>0.59</td>
<td></td>
<td>0.32</td>
</tr>
<tr>
<td>Crystal water</td>
<td>% w/w</td>
<td></td>
<td></td>
<td>19.60</td>
<td></td>
<td>6.3</td>
</tr>
</tbody>
</table>
Test Results - Filterability

<table>
<thead>
<tr>
<th></th>
<th>DH operation first test</th>
<th>DA-HF operation Morocco rock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slurry temperature</td>
<td>°C</td>
<td>76</td>
</tr>
<tr>
<td>Filtrate Density</td>
<td>20°C</td>
<td>1.308</td>
</tr>
<tr>
<td>Filtration rate :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atm. Pressure (local)</td>
<td>(mmHg)</td>
<td>760</td>
</tr>
<tr>
<td>Filter Vacuum</td>
<td>(mmHg)</td>
<td>500</td>
</tr>
<tr>
<td>Filtration cycle</td>
<td>(s)</td>
<td>180</td>
</tr>
<tr>
<td>Filtration rate</td>
<td>(TPD P$_2$O$_5$/m2)</td>
<td>3.8</td>
</tr>
</tbody>
</table>
Test Results – DH Crystals

- Small individual crystals
- No clusters
- Slurry easy to pump
Test Results – HH Crystals

- Clusters
- Ball shape
- Aggregates easy to filter
Test Results – Efficiency

- Industrial values observed: 97 – 98%
- To be compared with a DH process results: 94-95%
Test Results – Plant Operations

- Some difficulties due to filter hopper not designed for HH operation (solids accumulation)
- Operators could easily operate the plant
- Start-up and shut downs are as easy as for DH process
- Flash cooler to be operated at lower pressure
Lessons learned for conversion of existing DH plant

<table>
<thead>
<tr>
<th></th>
<th>Check</th>
<th>Modify</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attack tank</td>
<td>Agitators,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cooling</td>
<td></td>
</tr>
<tr>
<td>Digestion tank</td>
<td>Agitator,</td>
<td>Steam injector</td>
</tr>
<tr>
<td></td>
<td>lining SA pipe</td>
<td>New tank</td>
</tr>
<tr>
<td>Filter</td>
<td>Barometric</td>
<td>prewash</td>
</tr>
<tr>
<td></td>
<td>legs</td>
<td>Sectors</td>
</tr>
<tr>
<td>Cake discharge</td>
<td>Hopper</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conveying</td>
<td></td>
</tr>
<tr>
<td>Gas scrubber</td>
<td>capacity</td>
<td></td>
</tr>
</tbody>
</table>

Most DH plants can be converted to DA-HF technology
Profitability – preliminary study

- Profitability highly linked to local condition
 - Energy cost;
 - Utility cost;
 - Usage of gypsum;
 - Raw material cost.

- For a new plant producing MGA (500 tpd P_2O_5)
 - Investment cost similar
 - Lower steam, P_2O_5 consumption
 - Profitability 7 to 25% higher

- For a revamping (500 tpd P_2O_5)
 - Without capacity increase: 2 to 5 years depending local conditions (Raw mat and reagents prices; selling of gypsum...);
 - With capacity increase: payback of less than 2 years.
Concluding remarks

With the all the challenges ahead (raw materials, energy, environment) phosphoric acid production remains an exciting field for process developments
Thank you for your attention!