Hydrothermal Pre-Treatment Process of Phosphogypsum for Enhanced Rare Earths Recovery

Volha Yahorava
Mintek, South Africa

Eugene Lakay
Mintek, South Africa, eugenel@mintek.co.za

Wilma Clark
Mintek, South Africa

Follow this and additional works at: http://dc.engconfintl.org/phosphates_viii

Part of the Engineering Commons

Recommended Citation

Volha Yahorava, Eugene Lakay, and Wilma Clark, "Hydrothermal Pre-Treatment Process of Phosphogypsum for Enhanced Rare Earths Recovery" in "Beneficiation of Phosphates VIII", Dr. Patrick Zhang, Florida Industrial and Phosphate Research Institute, USA Professor Jan Miller, University of Utah, USA Professor Laurindo Leal Filho, Vale Institute of Technology (ITV), Brazil Marius Porteus, Foskor-Mining Division, South Africa Professor Neil Snyders, Stellenbosch University, South Africa Mr. Ewan Wingate, WorleyParsons Services Pty Ltd., Australia Prof. Guven Akdogan, Stellenbosch University, South Africa Eds, ECI Symposium Series, (2018). http://dc.engconfintl.org/phosphates_viii/35
Hydrothermal pre-treatment process of phosphogypsum for enhanced rare earths recovery
Phosphogypsum (PG) and Rare Earths

Phosphate ore + $\text{H}_2\text{SO}_4 \rightarrow \text{H}_3\text{PO}_4 + \text{CaSO}_4 \cdot n\text{H}_2\text{O}$

"Wet phosphoric acid process"

- $n = 2 : \text{CaSO}_4 \cdot 2\text{H}_2\text{O}$
- $n = \frac{1}{2} : \text{CaSO}_4 \cdot \frac{1}{2}\text{H}_2\text{O}$
- $n = 0 : \text{CaSO}_4$

- 70% to 90% of REEs originally in phosphate ore end up in PG;
Phosphogypsum (PG) as a source of REE

Phosphate ore + $H_2SO_4 \rightarrow H_3PO_4 + CaSO_4\cdot nH_2O$

“Wet phosphoric acid process”

- $n = 2 : CaSO_4\cdot 2H_2O$
- $n = \frac{1}{2} : CaSO_4\cdot \frac{1}{2}H_2O$
- $n = 0 : CaSO_4$

- 70% to 90% of REEs originally in phosphate ore end-up in PG;
- Average REEs content in PG between 0.27 wt.% and 0.8 wt.%;
- PG considered a secondary resource for REEs

<table>
<thead>
<tr>
<th></th>
<th>Worldwide</th>
<th>In South Africa</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG dumps, t</td>
<td>>7 billion</td>
<td>>70 million</td>
</tr>
<tr>
<td>Current growth rate, t/a</td>
<td>150-200 million</td>
<td>13,000-20,000</td>
</tr>
</tbody>
</table>
Methods for REE recovery from PG

- Chemical conversion to CaCO$_3$, REE$_3$CO$_3$, (NH$_4$)$_2$SO$_4$

- Bio-technologies
 - Bio-enhanced leaching
 - Sulphate reduction

- Leaching
 - HNO$_3$
 - HCl
 - H$_2$SO$_4$

- Resin-in-Leach process developed and piloted at Mintek (2011-2012):
 @ a price of >$21/kg for mixed REE oxide @ an overall recovery of 15%
 economics may already be favourable; BUT implementation requires significant financial investment
Non-destructive methods most attractive BUT…

REE recovery varies from 5 to 80 % depending on:

- Origin of the raw material (apatite);
- Specifics of the wet-phosphoric process;
- Age of the sample and conditions of storage

“Recoverable REE”

“Locked REE”
Recovery of REE from PG: problem statement

The Problem
- PG is highly variable
- Low and variable REEs recovery

Research Question
How can REEs associated with PG be “unlocked” and lead to increased recovery?

Upfront limitations:
- minimum use of reagents & generation of as little waste as possible
- conversion of PG into a saleable product
Approach followed…

- Construction industry uses “dry” and “wet” methods for natural gypsum conversion into hemihydrate

- Apply two approaches to modify gypsum and then

- Recover REEs from the modified PG, and for comparison, from the as received (unmodified) PG

- If found to be successful => confirm efficiency on various samples

Sources of PG:

- Rustenburg (initial testwork)
- Richards Bay
- Phalaborwa
PG modification and REE extraction

Phosphogypsum “as received”

“Dry” conversion:
calcining @ 100°C for 24 hrs

“Wet” conversion:
autoclaving @ 120°C for 5 hrs
(10% m/m solids)

REE recovery:
20 % (m/m) solids,
ambient temperature,
100 g/L H₂SO₄,
24 hrs residence time
SEM: (a) PG “as is”, (b) after “dry” and (c) “wet”
REE leaching from PG “as is” and after conversion

Wet/hydrothermal way of PG modification =>

- distinct change of crystals structure,
- liberation of REE phases and
- noticeable increase in recovery of REE in subsequent leach
Recovery of REE from variability samples

- Rustenburg
- Richards Bay
- Phalaborwa I
- Phalaborwa II

REE recovery
- as-received
- converted

Before modification
Encapsulated REE

After modification
Liberated REE phase
To address economics of REE recovery

Parameters/options to be optimized/tested:

- Temperature
- Solids content
- Residence time
- Slow cooling/flash cooling
- Subsequent REE phases upgrade via magnetic separation or flotation
- Hydrothermal treatment of PG => α-hemihydrate – better product for construction industry

Autoclaving @ 120°C
Hydrothermal conversion and construction industry

Giulini process (2 plants in Western Germany & 1 in Ireland):

- Feed - PG;
- Operating temperature - 120°C;
- Residence time – 1.5-2 hrs;
- pH 1-3
- Seeding
- Additives to control size and shape of α-hemihydrate (sulfite waste liquor or surface active substances)
- Filtration, drying and grounding

<table>
<thead>
<tr>
<th>Material and process requirements per ton of α-hemihydrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam LP (tons)</td>
</tr>
<tr>
<td>0.4-0.6</td>
</tr>
</tbody>
</table>
Hydrothermal conversion and construction industry

Imperial Chemical Industries, Inc. (ICI) α-hemihydrate process (semi-industrial process):

- Operating temperature - 150°C;
- 50 %(m/m) solids;
- Residence time – 3 minutes;
- 2 autoclaves;
- Crystal modifiers;
- Centrifuge for crystals separation at 100°C

Material and process requirements per ton of α-hemihydrate

<table>
<thead>
<tr>
<th>PG (tons)</th>
<th>HP Steam (tons)</th>
<th>Electric power (KWh)</th>
<th>Water (tons)</th>
<th>Effluent (tons)</th>
<th>Extent of conversion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.22</td>
<td>0.35</td>
<td>45</td>
<td>1.5</td>
<td>1.7</td>
<td>70-80</td>
</tr>
</tbody>
</table>
Flowsheets under consideration

PG → Hydrothermal pre-treatment, pH 1 → S/L → IX → REE liquor

H$_2$SO$_4$

α-hemihydrate

PG → Hydrothermal pre-treatment, water → Centrifuging → Physical separation (S/S) → REE concentrate

water

REE concentrate

α-hemihydrate
Conclusions

• During formation of phosphogypsum REE are partially locked in the gypsum structure => high REE recoveries require either complete dissolution of gypsum matrix or its recrystallization

• Hydrothermal modification process used in construction industry to produce α-hemihydrate releases up to 80% of REE associated with PG

• Further optimization testwork and evaluation of economics of the optimum flowsheet is required to confirm viability of simultaneous recovery of REE and production of high quality alpha-hemihydrate for construction industry
Acknowledgements

- Mintek for providing funding and support for the research
- Dr Eugene Lakay (Chief Investigator and leader of the project)
- Wilma Clark (mineralogical support)
- Jakolien Strauss (pressure testwork)
- Ntji Mothapo (execution of leaching testwork)
Title of paper: Hydrothermal modification of phosphogypsum to improve subsequent recovery of rare earth elements