Spring 6-10-2013

Low temperature co-pyrolysis of polypropylene and coffee wastes to fuels

Paolo Canu
Dept. of Industrial EngineeringUniversity of Padua

Elena Zanella
Dept. of Industrial EngineeringUniversity of Padua

Micol Della Zassa
Dept. of Industrial EngineeringUniversity of Padua

Luciano Navarini
Dept. of Industrial EngineeringUniversity of Padua

Follow this and additional works at: http://dc.engconfintl.org/bioenergy_iv

Part of the Chemical Engineering Commons

Recommended Citation

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in BioEnergy IV: Innovations in Biomass Conversion for Heat, Power, Fuels and Chemicals by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Low temperature co-pyrolysis of polypropylene and coffee wastes to fuels

Elena Zanella, Micol Della Zassa, Luciano Navarini, Paolo Canu

Dept. of Industrial Engineering
University of Padua (Italy)

illycaffè s.p.a.
Trieste, Italy
Motivation

Coffee in capsules

- *espresso* with standard machines
- Optimal coffee flavor extraction and cream/foam production

- Large amount of poorly accepted waste → valuable products?
Capsule concept

PP structure + Coffee (and a thin paper filter)

59% PP out of 16 g total, 37 mm high
Experimental approach

1. Orientation by TA
 DSC of single components and mixtures → pyrolysis conditions

2. Set-up and characterization of a pyro reactor (fixed bed)

3. Tests
 • PP/coffee
 • T

4. Liquids product analysis (GC-MS)
Materials

Isotactic PP (virgin)

Coffee ground

Singles components, to investigate composition
Thermal Analysis

DSC

1 - PP characterization (2°C/min)

\[T_m = 167^\circ C \quad \Delta H_m = 2.9 \text{ kJ/mol} \quad \alpha = 33\% \]
Thermal Analysis

DSC

2 – decomposition (in air or inert)

Degradation of coffee $T > 250 \, ^\circ C$

Degradation of PP $T > 360 \, ^\circ C$
Pyrolysis Reactor
upflow fixed bed

from mg to tens of g (ID = 38mm) products condensation @ 65, 25,-20 °C
Heating policy

'isothermal'

\[HR = 5^\circ C/min \]

3h at max \(T \) (360, 380, 400, 420°C)
Experimental design

% and T effect

<table>
<thead>
<tr>
<th># test</th>
<th>Composition [% vol]</th>
<th>T [°C]</th>
<th>WL [%]</th>
<th>liquid yield [% wt]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PP</td>
<td>coffee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>set 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>90</td>
<td>360</td>
<td>54.3</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>80</td>
<td>360</td>
<td>56.7</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>70</td>
<td>360</td>
<td>42.9</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>60</td>
<td>360</td>
<td>38.1</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>50</td>
<td>360</td>
<td>34.0</td>
</tr>
<tr>
<td>set 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>50</td>
<td>360</td>
<td>34.2</td>
</tr>
<tr>
<td>7</td>
<td>50</td>
<td>50</td>
<td>380</td>
<td>74.2</td>
</tr>
<tr>
<td>8</td>
<td>50</td>
<td>50</td>
<td>400</td>
<td>83.8</td>
</tr>
<tr>
<td>9</td>
<td>50</td>
<td>50</td>
<td>420</td>
<td>93.1</td>
</tr>
</tbody>
</table>

Set 1: PP from 10→ 50% @ 360°C
Set 2: T from 360 → 420°C @ 50% PP/coffee
Feed composition
overall degradation

@ 360°C the fraction of PP severely limits degradation
Temperature
overall degradation

@ 50/50% the temperature dramatically supports degradation
Products

GCMS of condensible prod.

- Linear HCs
- Low MW aromatics and euterocycles
- Linear alcools $C_{12}-C_{13}$ and groups of isomers
- Water <4% (coffee dependent)
Products clustering of products

<table>
<thead>
<tr>
<th>C atoms</th>
<th>Elution time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>$< C_6$</td>
</tr>
<tr>
<td>Medium</td>
<td>C_6 and C_{16}</td>
</tr>
<tr>
<td>Heavy</td>
<td>$> C_{16}$</td>
</tr>
</tbody>
</table>

Common classification

Rough but effective
Feed composition
yield by groups

more PP → products shift to higher MW
@360°C PP yields mostly high MW products
Temperature yield by groups

Light species degrade to gas (char might help)
Conclusions

1. The degradation of coffee anticipates PP

2. Higher coffee/PP \rightarrow lower MW of the products, larger conversion

3. $T > 360^\circ C$ affects the PP degradation, while products of coffee degradation is believed to support its cracking

4. Products vs. fossil fuels:
 similar: Aliphatic HCs and aromatics, $C_{14} - C_{30}$
 different: oxigenated and acids species
Issues worth exploring

1. a ‘fractional’ pyrolysis of biomass/PP, at 2 T’s
2. Effect of HR on the distribution of products
 Interactions of melt polymer and non-wettable biomass
 → modelling
3. Characterization of gas, for energy balance
Thank you for the attention!

Keep drinking good coffee