The catalytic efficiency and high selectivities achieved by natural metalloenzymes are a source of inspiration for the design of novel bio inspired catalysts. A powerful approach for creating artificial metalloenzymes involves incorporating a synthetic transition metal catalysts into a biomolecular scaffold such as a protein or DNA. We have developed a new concept for the design of artificial metalloenzymes that involves creation of a novel active site at the dimer interface of the transcription factor LmrR (Lactococcal multidrug resistance Regulator) [1]. LmrR was selected as the protein scaffold because it contains an unusual large hydrophobic pocket on the dimer interface. Here, two novel classes of LmrR-based artificial metalloenzymes will be presented, involving either supramolecular anchoring of the metal complex [2] or biosynthetic incorporation of an unnatural metal binding amino acid using expanded genetic code methodology [3]. These artificial metalloenzymes have been applied successfully in catalytic asymmetric C-C bond forming and hydration reactions. Finally, our recent insights into how to design the second coordination sphere will be discussed.