

A selective recovery methodology for the primary purification of lipid envelope virus-like particles from *S. cerevisiae*

Gaik Sui Kee¹, Hari Pujar², Nigel Titchener-Hooker¹ June 2008

¹UCL Biochemical Engineering; ²Merck, West Point, PA

Presentation outline

Research Overview

Background

Objectives

Studies & Findings

Purification potential & product yield

Impact of homogenisation pressure conditions

Effect on downstream HIC

Summary & Future Work

Virus-Like Particles

Virus Like Particles (VLPs):

Virus capsid proteins expressed in the absence of DNA

Benefits Vs Challenges

- Better safety profiles
- Higher efficiency
- Lower dosage requirements

- Difficult to characterise
- Sensitive to manufacturing process
 - "Process defines product" (Buckland, 2005)
- Purification involves a complex process stream & high levels of contaminants

Project definition

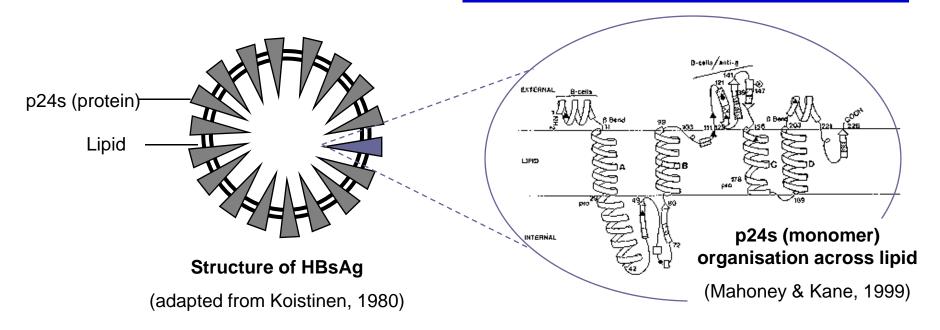
Objective

To improve process for future generation VLP vaccines

Focus

Primary purification and process interactions

Motivation


Sets the framework for final product yield & quality
Influences process stream and performance of downstream operations

Research Material

Lipid envelope VLP: Hepatitis B Surface Antigen (HBsAg)

Hepatitis B Surface Antigen

After expression, VLP particles remain localized on the ER (Fu et al, 1995)

Protein transport through the secretion pathway is blocked (Herbert et al, 1956)

- Koistinen, (1980), J. Virol., 35, 1, 20-23
- Mahoney & Kane, (1999), Vaccines, 3rd ed., pp158-182
- Fu et al, (1995), Biotechnol. Bioeng., 49, 578-586
- Herbert et al, (1956), J. Gen. Microbiol., 14, 601-622

Presentation outline

Research Overview

Background

Objectives

Studies & Findings

Purification potential & product yield

Impact of homogenisation pressure conditions

Effect on downstream HIC

Summary & Future Work

Conventional Selective recovery Fermentation Fermentation Harvest step Harvest step Cell disruption Cell disruption Centrifugation Detergent step Detergent step Centrifugation Centrifugation XAD-4 step XAD-4 step High resolution High resolution separation separation (Chromatography) (Chromatography) (Chi et al, 1994)

Research Interests

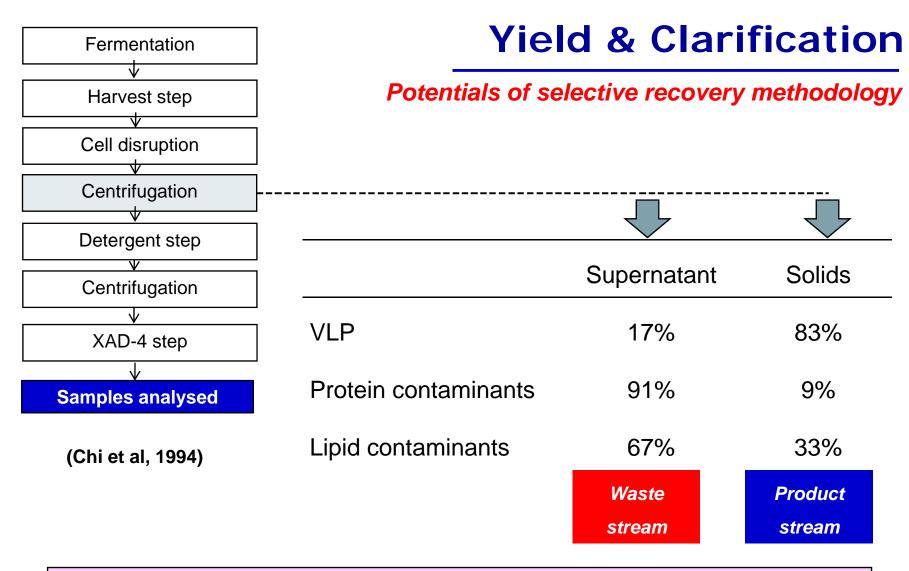
HBsAg remain localized on the ER following expression

Aim: Exploit expression characteristics to impart selectivity to product recovery

Major contaminants:

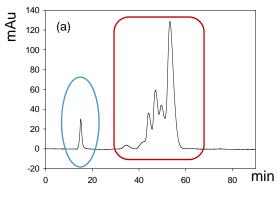
- Host cell proteins & lipids

Resulting impact:

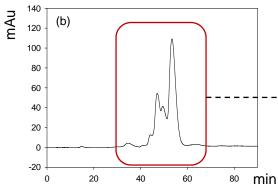

- fouling of membrane / column
- performance affected by non-specific interactions
- proteolysis effects on product

Dekleva, M. L., (1999), Vaccine Technology, pp2611-2622, Encyclopedia of Bioprocess Technology

Chi et al; (1994), Ann NY Acad. Sci. 1994, 721(1), 365-373


(Dekleva, 1992)

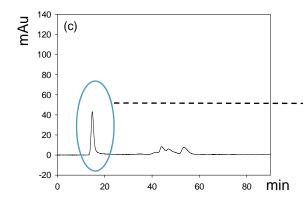
Recovery of VLP from solids fraction allows removal of bulk contaminants with minimal product loss



Protein (SEC) profile

(a) Conventional method

Early peak - VLP product

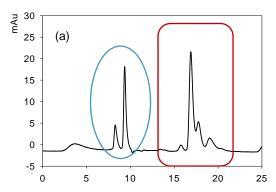

Later peaks – host protein contaminants

(b) Selective recovery – supernatant

host protein contaminants

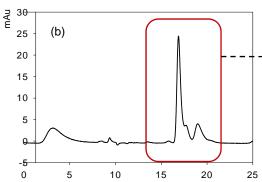
Waste stream

(c) Selective recovery -solids


VLP product

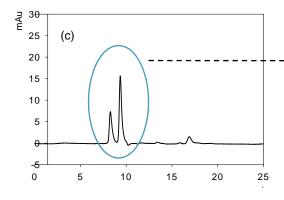
Product stream

Protein purification factor of > 8


Lipid HPLC profile

(a) Conventional method

Early peak - sterols


Later peaks - phospholipids

(b) Selective recovery – supernatant

Phospholipids (contaminants)

Waste stream

<u>(c) Selective recovery – solids</u>

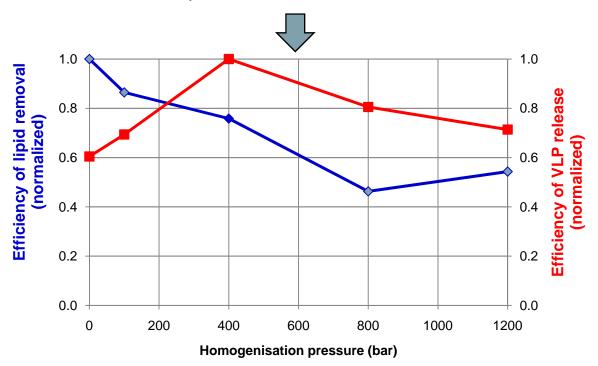
Sterols (contaminants)

Product stream

Lipid purification factor of ~ 3

Homogenisation

"Disruption by a high pressure homogenizer about 10,000 to 20,000 psi (700 – 1400 bar) is preferred because of its rapid and efficient operation." (Sitrin & Kubek, US patent 669705)

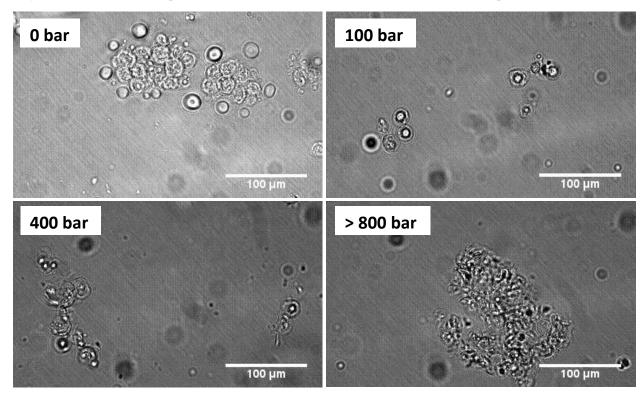

Impact of varying homogenisation pressure conditions on:

- Host protein elimination <u>no</u> significant difference
 - Host lipid elimination & VLP release

Analysis of material from solids fraction using the selective recovery methodology

NB: # passes kept constant at 4 passes

Best trade-off at 400 bar

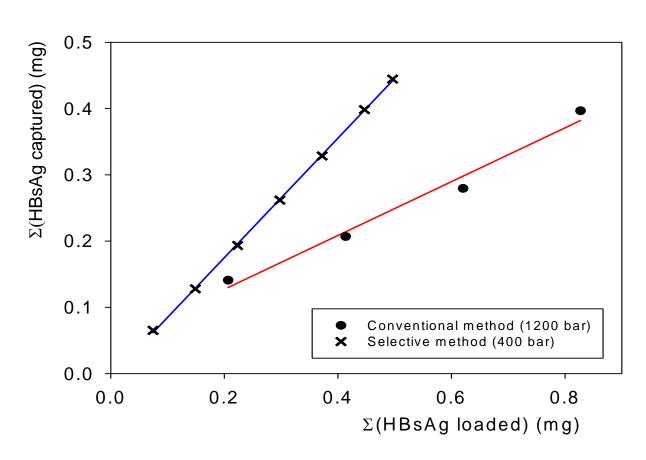


Homogenisation

Microscopy analysis of homogenate under different operating pressures

Detergent promotes coliberation of host cell lipids into process stream (Kee at al, 2008)

- Greater cell disruption & fragmentation at higher discharge pressures
- Greater surface area for detergent to extract lipids
 from



Higher levels of lipid contamination at increased homogenisation pressures

HIC chromatography

Evaluating impact on performance of downstream chromatography

HIC challenge using Butyl Sepharose (Hi-Trap)

Higher binding capacity for VLP product for sample from selective recovery method resulted in higher step yield

Presentation outline

Research Overview

Background

Objectives

Process considerations

Studies & Findings

Purification potential & product yield

Impact of homogenisation pressure conditions

Effect on downstream HIC

Summary & Future Work

Summary

- Selective recovery method allows the elimination of bulk contaminants originating from cell cytosol.
- Discharge pressures during homogenisation impacts VLP activity as well as the lipid level in the product stream. Best trade-off at 400 bar.

	Conventional method (1200 bar)	Selective recovery (400 bar)
VLP product	1	1.36 (+36%)
Protein (contaminants)	1	0.06 (-94%)
Lipid (contaminants)	1	0.22 (-78%)

Framework for future VLP process development

Future Work

Product characterisation studies

To validate product quality following selective recovery methodology

Further homogenisation optimisation

To study the effect of the number of passes in relation to operating pressure

Scale up studies & process validation

- To characterise the clarification level and dewatering characteristics upon scale up for the additional centrifugation step
- To ensure that process benefits observed at lab scale are not lost

Options for subsequent chromatographic operations

To investigate the possibilities of reducing the number of chromatographic operations

Acknowledgement

Merck & Co: for providing cell line expressing VLP

Funding Bodies: IMRC, ORSAS, UCL Graduate School

Individuals:

Dr Dan Bracewell

Dr Balasundaram Bangaru

Mr Jing Jin

Dr Hugh George

Dr Dicky Abraham