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Electrochemical Fabrication of Energetic Thin Films
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Thermal Batteries ) e
= Long shelf life, inert batteries with decades of shelf life
= Can produce very high power densities when activated

= Current thermal batteries have low efficiency, slow burning heat sources

= Faster, more efficient heat sources are commercially available, but are based on time
consuming processes and require expensive and risky post processing to shape

Perchlorate Pellet

Thermal Battery Function | Ni-Al pellet

Heat Pellet data Adams, Ingersoll



What are Energetic Thin Films? ) .

= Reactive mixture that releases heat upon initiation
= |deally gasless
= High energy local heating
= Easy initiation
= Requires nanostructure control to promote component
mixing and reaction initiation/propagation

= Solid state diffusion distances must be short for reaction to proceed
quickly

= Requires high surface area between
reactants

= Uses

= Energy sources in thermal batteries
= Micro brazing/welding
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Energetic Films: Fabrication ) .
= Fabrication method is important

= Requires high surface area to improve reaction rates

= |nterfaces must be atomically defined as intermixing
reduces rates and energy production

Heat Pellets Metallic Film

Heat generation
Reaction zone Propagation direction
—’,

o Al layers
Ni layers
Ignition X Non-reacted Bilay}arthiclmass:
el & Roacted fim e ool on) i RS AE
5-20 um
Substrate
Pressed from powder Sputtered
Low cost production High control over stoichiometry
Clean interfaces Clean interfaces
Difficult to handle (brittle, explosive) Requires high vacuum

Lower density Slow fabrication rates




Aluminum Nickel ) i

= Abundant and relatively cheap materials

= Max energy at 50% mole fractions
= Difference in atomic density translates to 60% Al by volume
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S. Ito, S. Inoue, and T. Namazu “The Size Limit of Al/Ni Multi Layer Rectangular Cuboids for Generating
Self-Propogating Exothermic Reaction on a Si Wafer” 2010

T. Namazu, H. Takemoto, H. Fuijita, Y. Nagai, and S. Inoue, “Self-Propagating Explosive Reactions in
Nanostructured Al/Ni Multilayer Films as A Localized Heat Process Technique for MEMS”, 2006 6




Dispersion Plating ) .

= Electroplating bath also consists
of suspended particles to be
incorporated in the deposited
film
= These nanoparticles are high
surface area and elementally ey ® il
different than the matrix metal | 5}}{3,;%‘;1’;‘1&3;5;5%0?f{g‘fgfs);p._
= Sedimentary codeposition e i

-3 Codeposited film with
~3 um particles

utilizes density difference of the |* B, Mt ‘ |
. . ‘*Pamcles
particles to increase Ly T L T
incorporation = IR °f ' 4 Embedde
=P i ' particles
= Need to understand plating rate . Mialmati
and arrival rate of particles to e

Embedded
particles *‘ —— Cathode

get proper incorporation
Cathode

C.T.J. Low, R.G.A. Wills, F.C. Walsh 2005

Conventional and Sedimentary Codeposition
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Deposition of Al / ) .
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Diffusivity measurements ) .
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NMR for Concentrations ) i,

ALCI, Fraction
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Viscosity is affected by conditions @

Effect of Shear Rate (RPS)
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Since plating rate is proportional to > ’

viscosity, the plating rate is changing e il
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Conductivity of ILs, Quiescent .

Property summation

Understanding how conductivity is

2.5
g, affected by composition and
© X X . .
S 15 X » Conductivity temperature allows prediction of total
5 1 AICI4- lonic species mobility (in static
S — - . .
505 Azcl? situations)
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Know Density

Know speciation

from NMR

Know ionic
composition

—_

\

Net charge is summation of ionic motion

b
g

PGSE can measure mobhility of cations

—>

Bulk conductivity — PGSE data will give
anionic mobhility
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Structuring of lonic Liquids
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Quiescent Solution
Higher viscosity

Lower Plating rates
Lower Apparent diffusivity

Mixed Solution

Lower viscosity (Thixotropic)
Higher Apparent Diffusivity
Faster plating rates

lonic motion is directly
correlated to viscosity, and
therefore plating rate




Diffusions under Different Shears [@Es.
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1o S By understanding viscosity variation, we
viscosity

can make predictions of plating rate
under high shears from knowing the
lonic properties at zero shear

Apparent Viscosity

=

Shear Rate
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Adding the Dispersed Phase

= Poor dispersion will imitate larger particle sizes
= |ncreased volume of inclusion phase
= Likely lead to voids/porosity during deposition
= Diffusion during burn testing will require longer

Best Fit

®  Calculation
A Experiment"

Velocity (m/s)
=

0 50 100 150 200
Bilayer Thickness 48 (nm)

Need to keep agglomeration to a minimum with agitation and electrolyte

properties/surface functionalization
15




Aluminum Film Analysis h) .

= Need XRD on different deposition potentials determined by
chronoamperommettry to identify crystal structure and
develop pulse plating regime

Electron Image 2




Post deposition Analysis ) .

= Codeposited film properties
= SEM/TEM for morphology and interface investigation

= Burn properties
= Energetic output (Differential Scanning Calorimetry (DSC))

= Propagation rates (high speed camera)

| Particles

N o i
bR @& . T L G R
SEM/EDS map of codeposited film 17
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Comparison of PVD vs. Dispersion Plating) .

' “ "'op Ni-Al ~5nm : : -
T Y EP Foil (50um thick, plated in 5 hours)

The interface is rough an likely not
edge on so intermixing may be
difficult to check.
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Reaction Testing

= Very low heat output

= Analysis post burn indicates very low nickel content in the
tested samples

= Focus has been on aluminum deposition, is now shifting to particle
incorporation (ratio and size)

= Sedimentary deposition apparatus will improve incorporation

= |nterface between Al and Ni are S|m|Iar to PVD sample
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Conclusions )

= Formation of dispersed phase composite of reactive
precursors can lead to an energetic film
= But, for right now, energy levels are lower than sputtered materials

= |onic liquids are proving to have very complex mechanical
behavior

= Rheology and diffusion that is related to composition complicates
matters

= Fully charged solution complicates analysis
= “Everythingis interrelated”
= Getting full, dispersed incorporation is the key to realizing the
full potential

20
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