Integrating Small-Scale Distributed Energy Generation, Storage, and Demand-Side Management in the Unit Commitment Problem

Johan Hurink
University of Twente

Maurice Bossman
University of Twente

Albert Molderink
University of Twente

Vincent Bakker
University of Twente

Gerard Smit
University of Twente

Follow this and additional works at: http://dc.engconfintl.org/power_grid

Recommended Citation
INTEGRATING SMALL SCALE DISTRIBUTED ENERGY GENERATION, STORAGE AND DEMAND SIDE MANAGEMENT IN THE UNIT COMMITMENT PROBLEM

Johann Hurink,
Maurice Bosman, Albert Molderink, Vincent Bakker, Gerard Smit
CONTENT

- Motivation
- Unit Commitment Problems
- Solution Approach
- Examples
ELECTRICITY GRID YESTERDAY/TODAY

[Diagram of electricity grid with production and consumption points, and energy flow]
BASIC UNIT COMMITMENT PROBLEM

- Given
 - N generators
 - $X_{i, \text{max}}$: maximum capacity generator
 - (d_1, \ldots, d_{NT}): demand vector for all periods
 - (r_1, \ldots, r_{NT}): spinning reserve vector for all periods
- Solution
 - $u^i = (u^i_1, \ldots u^i_{NT})$: unit commitment of generator i for all periods
 - $x^i = (x^i_1, \ldots x^i_{NT})$: production level of generator i for all periods
- Objective
 - Minimize cost $f(u, x) = \sum_{n=1}^{N} f^i(u^i, x^i)$
BASIC UNIT COMMITMENT PROBLEM

\[\begin{align*}
\min & \quad f(u, x) \\
\text{s.t.} & \quad \sum_i x_{j}^i \geq d_j \quad \forall j \\
& \quad \sum_i (u_{j}^i x_{j}^{i,\max} - x_{j}^i) \geq r_j \quad \forall j \\
& \quad u_{j}^i x_{j}^{i,\min} \leq x_{j}^i \leq u_{j}^i x_{j}^{i,\max} \quad \forall i, j \\
& \quad g^i,\text{down} \leq x_{j}^i - x_{j-1}^i \leq g^i,\text{up} \quad \forall i, j \\
& \quad u_{j}^i \geq u_{j-k}^i - u_{j-k-1}^i \quad \forall i, j, k \\
& \quad 1 - u_{j}^i \geq u_{j-k-1}^i - u_{j-k}^i \quad \forall i, j, k \\
& \quad u_{j}^i \in \{0, 1\} \quad \forall i, j \\
& \quad x_{j}^i \in \mathbb{R}^+ \quad \forall i, j
\end{align*} \]

- minimize costs
- fulfill demand
- spinning reserve
- production boundaries
- ramp up/down rates
- minimum on/off times
ELECTRICITY GRID TOMORROW

Challenges

• Distributed production
• Small scale + uncontrollable production
• Large number of generators
• Intelligent consumers
• (Local) storage
• Bidirectional flows
GENERALIZED UNIT COMMITMENT PROBLEM

NEW ELEMENTS

• M ‘pool’ of decentralized appliances (e.g. heat pumps, MicroCHPs, batteries, controllable freezers, …)
 • M is of large size
 • For each \(m \in M \) it has to be decided:
 • \(u^m = (u_1^i, \ldots, u_{NT}^i) \): unit commitment
 • Note: \(u^m \) can change the demand

• Pool can act as VPP and produce electricity
• In practice M may be split up in sub-pools \(M_1, \ldots, M_k \)
GENERALIZED UNIT COMMITMENT PROBLEM

\[
\begin{align*}
\min & \quad f(u, x) - g(p, y) \\
\text{s.t.} & \quad \sum_i x_{ij}^i + \sum_m y_{jm}^m \geq d_j + \sum_m h_j(z^m) \quad \forall j \\
& \quad \sum_i (x_{ij}^{i,\text{max}} - x_{ij}^i) \geq r_j \quad \forall j \\
& \quad u_{ij}^{i,\text{min}} \leq x_{ij}^i \leq u_{ij}^{i,\text{max}} \quad \forall i, j \\
& \quad s_{ij}^{i,\text{down}} \leq x_{ij}^i - x_{ij-1}^i \leq s_{ij}^{i,\text{up}} \quad \forall i, j \\
& \quad u_{ij}^i \geq u_{ij-k}^i - u_{ij-k-1}^i \quad \forall i, j, k \\
& \quad 1 - u_{ij}^i \geq u_{ij-k}^i - u_{ij-k}^i \quad \forall i, j, k \\
& \quad u_{jm}^m \geq u_{jm-k}^m - u_{jm-k-1}^m \quad \forall m, j, k \\
& \quad 1 - u_{jm}^m \geq u_{jm-k}^m - u_{jm-k}^m \quad \forall m, j, k \\
& \quad u^m \in \mathcal{H} \\
& \quad y_{jm}^m = l(u^m) \quad \forall m, j
\end{align*}
\]

- Gain from VPP
- Production + demand change
- Technical constraints
CHALLENGES OF GENERALIZED PROBLEM

- Already restricted versions are NP-hard
- The instances get extremely large (large set M)
- Several independent ‘pools’ M may exist
- Decisions are taken on different ‘levels’
HEURISTIC APPROACH FOR GENERALIZED PROBLEM

- Leveled approach
 - based on a general energy model
 - Cooperation between master- and subproblems
 - ‘Divide and Conquer’
- Patterns form ‘building blocks’
 - Represents sequence of decisions for the complete time horizon for a single device or a group of devices
 - Local constraints are taken into account
 - Leads to ‘electricity flow’-values per time period
HEURISTIC PATTERNS

devices electricity flow

\[N_H \]

pattern

\[\text{time} \]

1

1

\[N_T \]

UNIVERSITY OF TWENTE.
LEVELLED APPROACH

- Patterns are communicated between levels

level 1: large power plants

level 2: small power plants/villages

level 3: houses

level 4: appliances
LEVELLED APPROACH

ORIGINAL PROBLEM

- Black nodes: devices for which a planning is needed
- White nodes: aggregation nodes
LEVELLED APPROACH
MASTER- AND SUBPROBLEMS

- Master problem

• pattern have to be found
• serve as input
LEVELLED APPROACH
MASTER- AND SUBPROBLEMS

- Pattern have to be found
- Serve as input

- Sub problem for villages
LEVELLED APPROACH
MASTER- AND SUBPROBLEMS

- Sub problem for small generators

- pattern have to be found
- serve as input
LEVELLED APPROACH
MASTER- AND SUBPROBLEMS

- Sub problem for houses

- pattern have to be found
- serve as input
LEVELLED APPROACH
MASTER- AND SUBPROBLEMS

- Sub problem for house with only one devise

• pattern have to be found
• serve as input
LEVELLED APPROACH
MASTER- AND SUBPROBLEMS

- Sub problem for devises

- pattern have to be found
- serve as input

UNIVERSITY OF TWENTE.
LEVELLED APPROACH

INITIAL PHASE

- pattern have to be found
- serve as input

- Solve master problem
 - model real devices ‘in detail’
 - use ‘rough’ estimation for local entities represented by aggregation nodes
- Result:
 - Schedule for real devices
 - ‘goal’-pattern for aggregation nodes
LEVELLED APPROACH
ITERATIVE PHASE

- pattern have to be found
- serve as input

- Solve sub problem for aggregation node
 - use ‘goal’-pattern of master problem as objective
 - model real devices of this sub problem
 - use ‘rough’ estimation for aggregation nodes of this sub problem

- Result:
 - schedule for real devices
 - ‘goal’-pattern for local aggregation nodes
 - update rough estimate at master problem
LEVELLED APPROACH
ITERATIVE PHASE

- Iterative process is repeated taking into account
 - new information from subproblem or
 - new goals from master problems

- Have to decide for a given problem at some level whether
 - to ask for new pattern from sub problems or
 - to update information to master problem

- Concrete optimization problems resulting for specific aggregation nodes may vary
EXAMPLE 1
POWER PLANTS AND MICRO-CHP’S

- 10 small power plants
 - total capacity 15 MW
- 5000 houses equipped with a micro-CHP forming a VPP
 - total capacity 5 MW
 - production capacity one day around 37 MWh
- Total demand 114 MWh

- Rough planning:
 - aggregate all micro-CHP’s by calculating minimum and maximum production up to time t based on heat demands of the houses
EXAMPLE 1
POWER PLANTS AND MICRO-CHP’S

Fulfilling demand only by power plants
EXAMPLE 1
POWER PLANTS AND MICRO-CHP'S

Rough planning Master Problem including micro-CHP's
EXAMPLE 1
POWER PLANTS AND MICRO-CHP’S

Final detailed planning including micro-CHP’s
EXAMPLE 1
POWER PLANTS AND MICRO-CHP'S

Difference rough and detailed micro-CHP planning
EXAMPLE 2
POWER PLANTS, MICRO-CHP’S, HEAT PUMPS, EL. CARS, FREEZERS, BATTERIES
QUESTIONS

Webpage on Energy Research University of Twente

et.utwente.nl