CONTACTLESS MICROWAVE SENSORS AND THEIR APPLICATION IN BIOLOGICAL SINGLE USE TECHNIQUES

Thomas Nacke, Institute for Bioprocessing and Analytical Measurement Techniques, Germany
Thomas.Nacke@iba-heiligenstadt.de

Brian P. Cahill, Institute for Bioprocessing and Analytical Measurement Techniques, Germany
Caspar Demuth, Zurich University of Applied Sciences, Switzerland

Ralf Klukas, IRK Dresden, Germany

Robert Kuehler, Institute for Bioprocessing and Analytical Measurement Techniques, Germany

Daniel Martin, Institute for Bioprocessing and Analytical Measurement Techniques, Germany

Iris Poggendorf, Zurich University of Applied Sciences, Switzerland

Yahor Zaikou, Institute for Bioprocessing and Analytical Measurement Techniques, Germany

Key Words: Broadband sensing, Microwave Sensing, Single Use Bioreactors, Conductivity, Permittivity.

In bioprocess technology, highly-sensitive robust sensors are required for operation in single use bioreactors (SUB) without direct contact to the fluid under analysis. Measuring the change of dielectric properties (permittivity and conductivity) at microwave frequencies allows the investigation of biological and chemical matter and processes, e.g., cell growth, cell metabolism and the concentration of large aqueous based molecules. This contribution describes a high frequency sensor that combines detection in macro- or microfluidic networks with quick and precise analysis. These kinds of sensors can be installed directly to the outer surface of the culture device (Figure 1) or can be clamped onto tubing (Figure 2). A clamped on sensor consists of a fluidic channel placed between a micro-strip line waveguide combined with resonant properties.

Figure 1 – MW-Sensor with a disposable flask

Figure 2 – MW Sensor as clamp-on device

Figure 3 - Measurement of conductivity of KCl solution

Figure 4 – Cultivation of E. coli bacteria

The developed contactless sensors can be connected to the SUB by means of a special port and associated cabling. Microwave Sensors can measure through optically opaque materials and are particularly suited to contactless measurement of permittivity and conductivity as can be seen form the measurement of KCl concentration (Figure 3) and the growth of E. coli bacteria (Figure 4). This contribution describes the scalable contactless monitoring system of liquids in cell culture reactors and dosing systems using high frequency sensors.