Validation of the oxygen buffering ability of bed materials used for ocac in a large scale cfb boiler

Angelica Corcoran
Department of Energy and Environment, Division of Energy Technology, Chalmers University of Technology, Sweden, corcoran@chalmers.se

Fredrik Lind
Chalmers University of Technology, Sweden

Henrik Thunman
Chalmers University of Technology, Sweden

Follow this and additional works at: http://dc.engconfintl.org/fluidization_xv

Part of the Chemical Engineering Commons

Recommended Citation
Angelica Corcoran, Fredrik Lind, and Henrik Thunman, "Validation of the oxygen buffering ability of bed materials used for ocac in a large scale cfb boiler" in "Fluidization XV", Jamal Chaouki, Ecole Polytechnique de Montreal, Canada Franco Berruti, Wewstern University, Canada Xiaotao Bi, UBC, Canada Ray Cocco, PSRI Inc. USA Eds, ECI Symposium Series, (2016). http://dc.engconfintl.org/fluidization_xv/15

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Fluidization XV by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Validation of the oxygen buffering ability of bed materials used for OCAC in a large scale CFB boiler

Fredrik Lind, Angelica Corcoran and Henrik Thunman

Department of Energy and Environment
Chalmers University of Technology

May 23rd, 2016
Fluidization XV – Fairmont Le Chateau Montebello
Quebec, Canada
Circulating Fluidized Bed boilers
Background to OCAC

- Spinoff from Chemical Looping Combustion
- Addition of ilmenite as part of bed inventory
- Possibility to provide an increased oxygen distribution
Oxygen Carrier Aided Combustion
Oxygen Carrier Aided Combustion

\[Me + \frac{1}{2} O_2 \rightarrow MeO \]

\[nC_iH_j + xMeO \rightarrow xMe + yCO_2 + zH_2O \]
Oxygen Carrier Aided Combustion

\[Me + \frac{1}{2} O_2 \rightarrow MeO \]

\[nC_iH_j + xMeO \rightarrow xMe + yCO_2 + zH_2O \]
Aim: Validation of the OCAC concept

- Earliest investigation with 100% ilmenite in industrial relevant CFB conditions

- Evaluate oxygen buffering ability experimentally

- Validate experiments by identifying conceptual patterns with a dynamic pulse response
Research from lab to commercial scale

Chalmers 12MWth research boiler

E.ON commercial waste boiler 80MWth

Continuous operation since February 2016
Experimental: Procedure and Results

• Reference case with 100% silica sand was compared to operation with 100% ilmenite

• Instantaneous fuel pulse of 8MW on top of the 6MW base load
Dynamic pulse response

Flue gas concentrations

- Sand
- MeO

Volatile Rich
Volatile Poor

Cyclone

Air
Fuel
Bed Material

Oxygen (mole%)
Unburned species (mole%)
Dynamic pulse response

Volatile rich
Volatile poor

Flue Gas

Cyclone

Volatile rich
Volatile poor

Degree of oxidation

Time (s)

0 400
0 400
Concluding remarks

- Initial experience with MeO in large scale
- MeO has oxygen buffering properties
- Enhanced utilization of oxygen in time and space
Thank you!

Angelica Corcoran
corcoran@chalmers.se