Controlled, pulsatile release of thermostabilized inactivated polio vaccine from PLGA-based microspheres

Stephany Y. Tzeng  
Massachusetts Institute of Technology, sytzeng@mit.edu

Rohiverth Guarecuco  
Massachusetts Institute of Technology

Kevin J. McHugh  
Massachusetts Institute of Technology

Evan M. Rosenberg  
Massachusetts Institute of Technology

Yingying Zeng  
Massachusetts Institute of Technology

See next page for additional authors

Follow this and additional works at: http://dc.engconfintl.org/vaccine_vi  
Part of the Engineering Commons

Recommended Citation
Stephany Y. Tzeng, Rohiverth Guarecuco, Kevin J. McHugh, Evan M. Rosenberg, Yingying Zeng, Robert Langer, and Ana Jaklenec, "Controlled, pulsatile release of thermostabilized inactivated polio vaccine from PLGA-based microspheres" in "Vaccine Technology VI", Laura Palomares, UNAM, Mexico Manon Cox, Protein Sciences Corporation, USA Tarit Mukhopadhyay, University College London, UK Nathalie Garçon, BIOASTER Technology Research Institute, FR Eds, ECI Symposium Series, (2016).  
http://dc.engconfintl.org/vaccine_vi/15

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Vaccine Technology VI by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Authors
Stephany Y. Tzeng, Rohiverth Guarecuco, Kevin J. McHugh, Evan M. Rosenberg, Yingying Zeng, Robert Langer, and Ana Jaklenec

This abstract and presentation is available at ECI Digital Archives: http://dc.engconfintl.org/vaccine_vi/15
Controlled, pulsatile release of stable inactivated polio vaccine from PLGA-based microspheres

Stephany Y. Tzeng
Jaklenec group, Langer Lab
Massachusetts Institute of Technology
June 13, 2016
Inactivated polio vaccine (IPV): background

- Poliomyelitis is a potentially fatal infectious disease that can be prevented by vaccination
- For vaccine efficacy, IPV must be administered in 2-3 bolus injections (IM) spread over weeks or months
- Vaccine coverage is hampered in developing countries by difficulties of patient access in at-risk populations

McHugh et al. 2015. *J Control Release* 219:596
Poly(lactic-co-glycolic acid) (PLGA) microparticles for controlled release

- Biodegradable polyester
  - Hydrolytically cleaved at ester linkages
  - Bulk-degrading
  - Degradation rate depends on lactide-to-glycolide ratio, molecular weight, and formulation parameters

- Polymer degradation leads to protein release

**IPV encapsulated in PLGA matrix**

**Burst #1:** IPV near surface (diffusion)

**Burst #2:** PLGA degrades and forms pores that allow IPV release

Pulsatile release at relevant time points can be measured from microspheres loaded with stable antigens
Poly(lactic-co-glycolic acid) (PLGA) microparticles for controlled release

- Biodegradable polyester
  - Hydrolytically cleaved at ester linkages
  - Bulk-degrading
  - Degradation rate depends on lactide-to-glycolide ratio, molecular weight, and formulation parameters

- Polymer degradation leads to protein release
- All 3 serotypes of IPV must survive encapsulation, incubation, and release without denaturation
Poly(lactic-co-glycolic acid) (PLGA) microparticles for controlled release

- Biodegradable polyester
  - Hydrolytically cleaved at ester linkages
  - Bulk-degrading
  - Degradation rate depends on lactide-to-glycolide ratio, molecular weight, and formulation parameters
- Polymer degradation leads to protein release
- All 3 serotypes of IPV must survive encapsulation, incubation, and release without denaturation

IPV must survive in antigenic conformation for weeks/months

Emulsion 1
IPV-in-PLGA

Emulsion 2
IPV-in-PLGA-in-oil

Dry particles

Release over weeks/months at 37°C
IPV consists of three serotypes (types 1, 2, and 3), which have different stability properties.

Recovery was calculated from the D-antigenicity as measured by ELISA.

IPV was incubated at 37°C in PBS (pH 7.4) buffer.

IPV is unstable at elevated temperatures, with >50% of serotype 1 denatured after 1 week at 37°C.

All initial thermostability studies were done with IPV in aqueous solution (not in microspheres).
Types of excipients

<table>
<thead>
<tr>
<th>Sugar</th>
<th>Protein</th>
<th>Amino acid(s)</th>
<th>Ions</th>
<th>pH modulator</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorbitol</td>
<td>Gelatin</td>
<td>MSG (glutamate)</td>
<td>MgCl₂</td>
<td>Mg(OH)₂</td>
<td>D₂O</td>
</tr>
<tr>
<td>Sucrose</td>
<td>BSA</td>
<td>Arginine</td>
<td></td>
<td>Mg(CO)₃</td>
<td></td>
</tr>
<tr>
<td>Trehalose</td>
<td>Casein</td>
<td>Lysine</td>
<td></td>
<td>Arginine</td>
<td></td>
</tr>
<tr>
<td>Maltodextrin</td>
<td></td>
<td>Methionine</td>
<td></td>
<td>EPO</td>
<td></td>
</tr>
<tr>
<td>Inulin</td>
<td></td>
<td>Aspartate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chitin/chitosan</td>
<td></td>
<td>Glutathione</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vaccine formulations often contain a mixture of multiple excipients. Some of these are remnants of the cell culture used for vaccine production, some are added deliberately to preserve stability, and some are a combination of the above.
**IPV stability: incubation at 37°C**

Sugars on their own did not confer improved stability on IPV during incubation at 37°C.

Sugars performed better when combined with MSG and MgCl₂ and also performed better at higher concentrations. Of the sugars tested, **maltodextrin and sucrose** were the best.

**IPV stability: incubation at 37°C**

**Stability after 28 days of incubation at 37°C: Type 1 only**

 Sugars on their own did not confer improved stability on IPV during incubation at 37°C.

 Sugars performed better when combined with **MSG** and **MgCl\(_2\)** and also performed better at higher concentrations. Of the sugars tested, **maltodextrin and sucrose** were the best.

---

Sugars on their own did not confer improved stability on IPV during incubation at 37°C.

Sugars performed better when combined with MSG and MgCl₂ and also performed better at higher concentrations. Of the sugars tested, maltodextrin and sucrose were the best.

Sugars on their own did not confer improved stability on IPV during incubation at 37°C.

Sugars performed better when combined with MSG and MgCl₂ and also performed better at higher concentrations. Of the sugars tested, maltodextrin and sucrose were the best.

After two months of incubation at 37°C, IPV formulation with maltodextrin + MSG + MgCl₂ saw good recovery of all three serotypes, with 30-60% recovery of type 1 and 40-70% recovery of types 2 and 3.

Poly(lactic-co-glycolic acid) (PLGA) microparticles for controlled release

- Biodegradable polyester
  - Hydrolytically cleaved at ester linkages
  - Bulk-degrading
  - Degradation rate depends on lactide-to-glycolide ratio, molecular weight, and formulation parameters

- Polymer degradation leads to protein release

- All 3 serotypes of IPV must survive encapsulation, incubation, and release without denaturation

IPV must survive drying process

Emulsion 1
IPV-in-PLGA

Emulsion 2
IPV-in-PLGA-in-oil

Dry particles

Release over weeks/months at 37°C
An aqueous solution of IPV was dried under vacuum for 1 hr at room temperature.

IPV alone (without added excipients) was denatured by drying.

Excipients and excipient combinations were added to improve stability.
Gelatin and sugars both showed good results after drying.

Sugars generally showed increased protective ability in combination with amino acids (glutamate, MSG) and/or ions (MgCl$_2$).

Gelatin and sugars both showed good results after drying.

Sugars generally showed increased protective ability in combination with amino acids (glutamate, MSG) and/or ions (MgCl\textsubscript{2}).

Gelatin and sugars both showed good results after drying.

Sugars generally showed increased protective ability in combination with amino acids (glutamate, MSG) and/or ions (MgCl₂).

Poly(lactic-co-glycolic acid) (PLGA) microparticles for controlled release

- Biodegradable polyester
  - Hydrolytically cleaved at ester linkages
  - Bulk-degrading
  - Degradation rate depends on lactide-to-glycolide ratio, molecular weight, and formulation parameters
- Polymer degradation leads to protein release
- All 3 serotypes of IPV must survive encapsulation, incubation, and release without denaturation

IPV must survive emulsion (sonication)

Emulsion 1: PV-in-PLGA
Emulsion 2: IPV-in-PLGA-in-oil
Dry particles
Release over weeks/months at 37°C
IPV stability: Emulsification (sonication)

Gelatin and showed the best protection of IPV during the sonication step.

Sugars and salts generally had minimal effects on the stability during the emulsification step.

IPV stability: Emulsification (sonication)

- Incubation at 37°C:
  - Sucrose/MSG/MgCl$_2$
  - Maltodextrin/MSG/MgCl$_2$

- Drying:
  - Sorbitol/MSG/MgCl$_2$
  - Maltodextrin/MSG/MgCl$_2$

- Emulsification:
  - Gelatin
**IPV release from PLGA particles**

Pulsatile release

Cumulative release

*In vitro* cumulative release results are plotted as percentages of the human dose (40 DU type 1, 8 DU type 2, 32 DU type 3)
Sugar-based excipients co-encapsulated in PLGA particles promote IPV release in two bursts; however, very little later release is seen for types 1 and 3.

PLGA microspheres: pH

- PLGA degrades into acidic molecules
- PLGA degrades by bulk erosion
  - Acid buildup inside microspheres
- pH of release medium (outside particles) over time suggests acid is also building up inside particles over time

![Graph showing pH over time for PLGA release studies.](image)

![Bar chart showing stability after 7 days of incubation at 37°C.](image)
PLGA microspheres:
Insoluble excipients buffer acidic products

- Water-soluble bases raise the pH of the IPV environment and cause denaturation
- Small molecule bases diffuse out of the microparticle faster than the antigen, depleting the basic or buffering component before PLGA degradation is completed
- \( \text{Mg(OH)}_2 \) is an insoluble base that can be dispersed in the polymer matrix

![Graphs showing cumulative number of doses released per 50 mg particles over time for different types of microspheres.](image)

PLGA microspheres: Insoluble excipients buffer acidic products

- Cationic polymer Eudragit E PO is insoluble in water at neutral pH but soluble at < 3 pH
  - Basic functional groups raise the local pH of PLGA
  - The local basic pH accelerates PLGA degradation, forming acid components that are buffered by the basic Eudragit E
PLGA microspheres: cationic polymers as pH-modulating dopants

- The amount of Eudragit E in the particles controls the spacing of burst release

- The formulations shown above release a total of ~2 human doses spread between 2 distinct bursts, mimicking multiple bolus injections

One bolus administration of IPV elicits no detectable neutralizing antibodies against serotype 1.

All groups: first injection at t=0

1 dose bolus + empty particles
Two boluses administered 4 weeks apart are able to elicit neutralizing antibodies against type 1 poliovirus, although the proportion of animals protected against the virus decreased over time.
A single injection of IPV-containing microspheres (formulation F1) elicits a strong neutralizing response immediately after injection, without needed a second administration.

A single injection of microspheres is equal or superior to two bolus injections and appears to have even longer duration of immunity.
Immunity against type 2, the most stable of the antigens, is elicited well by the microsphere formulation (red line), matching or exceeding the multiple-bolus controls.
Interestingly, type 3 stability in the microspheres was poorer *in vivo* than in the initial *in vitro* experiments.

Further stability studies were conducted to optimize type 3 stability.
An optimized concentration of poly(L-lysine) (PLL) improves IPV stability, particularly for types 1 and 3.

Higher overall release and higher late type 3 release are observed from microspheres that co-encapsulate polycations, such as PLL and low MW polyethylenimine (PEI).
IPV *in vivo* experiment (next iteration): Neutralizing antibodies (2 weeks)

Type 1: F1 microspheres (red) elicited neutralizing antibodies within 2 weeks, while none of the bolus controls did. The new formulation F5 (purple) is superior to F1 at the early time point.

Type 3: The new formulation F5 (purple) is superior to the previous formulation F1 and, importantly, superior to the bolus controls. Importantly, the low dose of F5, in which the dosage was calculated by theoretical loading (i.e., assuming no loss of IPV doses due to processing or stability) is still superior to all controls and previous formulations.
Summary

• Excipients can stabilize IPV against thermal and physical stresses over time

• IPV co-encapsulated with stabilizers and pH-modulators can be released in a pulsatile manner from PLGA particles

• Encapsulated IPV elicits a more potent neutralizing antibody response in vivo than free IPV injected as a bolus

Future Directions

• Expand pulsatile or continuous release platform to other vaccines
  – Sabin IPV (sIPV), experimental HIV vaccines, etc.

• Investigate the effect of types of release kinetics on immune response

• Increase the number of pulses that are released in vivo

• Pulsatile release of vaccines from core-shell particles
Acknowledgements

• MIT: Langer lab
  Robert Langer, ScD
  Ana Jaklenec, PhD

Rohiverth Guarecuco
Jennifer Lu
David Yang
James Sugarman
Allison Linehan
Sviatlana Rose
Thanh Nguyen, PhD
Matthias Oberli, PhD
Kevin McHugh, PhD
Aaron Anselmo, PhD
Adam Behrens, PhD
Shiran Ferber, PhD
Corey Bishop, PhD
James Norman, PhD

• Bill and Melinda Gates Foundation