Updated Composite Materials Handbook-17 (CMH-17) Volume 5 - Ceramic Matrix Composites

James Doug Kiser
NASA Glenn Research Center, USA, james.d.kiser@nasa.gov

Rachael Andrulonis
Wichita State University, Wichita, KS

Cindy Ashforth
Federal Aviation Administration, Renton, WA

Kaia E. David
The Boeing Company, Huntington Beach, CA

Curtis Davies
Federal Aviation Administration/Materials & Structures, Atlantic City Intl. Airport, NJ

Follow this and additional works at: http://dc.engconfintl.org/acmc

Part of the Engineering Commons

Recommended Citation

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Advanced Ceramic Matrix Composites: Science and Technology of Materials, Design, Applications, Performance and Integration by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
UPDATED
COMPOSITE MATERIALS HANDBOOK-17 (CMH-17)
VOLUME 5 — CERAMIC MATRIX COMPOSITES

J. Douglas Kiser, NASA Glenn Research Center, Cleveland, OH
Rachael Andrulonis, Wichita State University, Wichita, KS
Kaia E. David, The Boeing Company, Huntington Beach, CA
Curtis Davies, Federal Aviation Administration, Atlantic City Intl. Airport, NJ
Cindy Ashforth, Federal Aviation Administration, Renton, WA

Advanced Ceramic Matrix Composites: Science and Technology of Materials,
Design, Applications, Performance and Integration

Engineering Conferences International, Santa Fe, NM 11/06/2017
Overview

- CMH-17 Mission and Vision
- CMH-17 Organization / Handbook Content / History Summary
- Volume 5
- CMC Working Groups
- Summary / Plans for the Future
CMH-17 Mission

The Composite Materials Handbook (CMH) organization *creates, publishes*, and *maintains* proven, *reliable* engineering information and standards, subjected to thorough technical review, *to support the development and use of composite materials and structures.*
CMH-17 Vision

The Composite Materials Handbook will be the authoritative worldwide focal point for technical information on composite materials and structures.

- Volunteer organization that creates, publishes, and maintains engineering information and standards to support the use of composite materials and structures
- Statistically analyzed composite data and guidance
The CMH-17 Organization

~ 160 volunteers attend PMC meetings
~ 300 total members on PMC, CMC, and MMC rosters

Permanent Working Groups

Handbook Chairmen
Larry Ilcewicz, FAA
Curtis Davies, FAA

Executive Group
(PMC, MMC & CMC WG Chairs)

PMC Coordination Group
Larry Ilcewicz, FAA
Curtis Davies, FAA

CMC Coordination Group
Curtis Davies, FAA

MMC Coordination Group
Inactive

Professional Support

Secretariat
NIAR/Wichita State University

Testing
Dan Adams, Univ. of Utah
John Moylan, ElementTesting

Spacecraft
Jeremy Jacobs, NASA
Jeff Eichinger, Boeing

Sandwich Composites
Larry Gintert, Consultant
Melanie Violette, FAA

Specialized Data Dev.
Inactive

Data Review
John Tomblin, Wichita State Univ
Curtis Davies, FAA

Statistics
Beth Clarkson, Wichita State Univ
Curtis Davies, FAA

Crashworthiness
Allan Abramowitz, FAA
Mostafa Rassaian, Boeing

Supportability
Joseph Rakow, Exponent Failure Anal.
Danielle Rocha, Embraer

Safety Management
Larry Ilcewicz, FAA
Cindy Ashforth, FAA

Materials & Processes
Margaret Roylance, Nano Tech
Daniel Ruffner, Consultant

Guidelines
Carl Rousseau, LM/Aero-FW
Steve Ward, UTAS

Handbook Chairmen
Larry Ilcewicz, FAA
Curtis Davies, FAA

Executive Group
(PMC, MMC & CMC WG Chairs)

PMC Coordination Group
Larry Ilcewicz, FAA
Curtis Davies, FAA

CMC Coordination Group
Curtis Davies, FAA

MMC Coordination Group
Inactive

Professional Support

Secretariat
NIAR/Wichita State University

Testing
Dan Adams, Univ. of Utah
John Moylan, ElementTesting

Spacecraft
Jeremy Jacobs, NASA
Jeff Eichinger, Boeing

Sandwich Composites
Larry Gintert, Consultant
Melanie Violette, FAA

Specialized Data Dev.
Inactive

Data Review
John Tomblin, Wichita State Univ
Curtis Davies, FAA

Statistics
Beth Clarkson, Wichita State Univ
Curtis Davies, FAA

Crashworthiness
Allan Abramowitz, FAA
Mostafa Rassaian, Boeing

Supportability
Joseph Rakow, Exponent Failure Anal.
Danielle Rocha, Embraer

Safety Management
Larry Ilcewicz, FAA
Cindy Ashforth, FAA

Materials & Processes
Margaret Roylance, Nano Tech
Daniel Ruffner, Consultant

Guidelines
Carl Rousseau, LM/Aero-FW
Steve Ward, UTAS

~ 160 volunteers attend PMC meetings
~ 300 total members on PMC, CMC, and MMC rosters

Permanent Working Groups

Handbook Chairmen
Larry Ilcewicz, FAA
Curtis Davies, FAA

Executive Group
(PMC, MMC & CMC WG Chairs)

PMC Coordination Group
Larry Ilcewicz, FAA
Curtis Davies, FAA

CMC Coordination Group
Curtis Davies, FAA

MMC Coordination Group
Inactive

Professional Support

Secretariat
NIAR/Wichita State University

Testing
Dan Adams, Univ. of Utah
John Moylan, ElementTesting

Spacecraft
Jeremy Jacobs, NASA
Jeff Eichinger, Boeing

Sandwich Composites
Larry Gintert, Consultant
Melanie Violette, FAA

Specialized Data Dev.
Inactive

Data Review
John Tomblin, Wichita State Univ
Curtis Davies, FAA

Statistics
Beth Clarkson, Wichita State Univ
Curtis Davies, FAA

Crashworthiness
Allan Abramowitz, FAA
Mostafa Rassaian, Boeing

Supportability
Joseph Rakow, Exponent Failure Anal.
Danielle Rocha, Embraer

Safety Management
Larry Ilcewicz, FAA
Cindy Ashforth, FAA

Materials & Processes
Margaret Roylance, Nano Tech
Daniel Ruffner, Consultant

Guidelines
Carl Rousseau, LM/Aero-FW
Steve Ward, UTAS

• Two Active Coordination Groups.
• Each Coordination Group approves new additions to the handbook, and can elect to remove existing material from the handbook.

https://www.cmh17.org/HOME/Organization.aspx
Structure of Handbook

- Volume 1 Polymer Matrix Composites: *Guidelines for Characterization of Structural Materials*
- Volume 2 Polymer Matrix Composites: *Material Properties*
- Volume 3 Polymer Matrix Composites: *Materials Usage, Design and Analysis*
- Volume 4 Metal Matrix Composites
- Volume 5 Ceramic Matrix Composites (recently updated)
- Volume 6 Structural Sandwich Composites (Initial Release)

PMC Handbooks are Significantly More Established
CMC Components for Gas Turbine Engines: Now Being Used in Commercial Aircraft

Ceramic-matrix composites enable revolutionary gains in turbine engine efficiency

“...A new epoch in high-temperature ceramic-matrix composites (CMCs) is upon us. Following three decades of research and billions of dollars of investment, CMCs are slated to appear in hot components in gas turbine engines for civilian aircraft.”

F. W. Zok, American Ceramic Society Bulletin, Vol. 95, No. 5
Handbook History

1943 ANC Bulletin 17 Plastics for Aircraft
1959 MIL-HDBK-17 Plastics for Air Vehicles
1961 MIL-HDBK-17A Plastics for Aerospace Vehicles
1968 Coordination Group Formed
1971 MIL-HDBK-17A Plastics for Aerospace Vehicles
1978 Coordination Group Formed
1986 Secretariat Added
1988 MIL-HDBK-17B Vol. 1 Release
1990 First PMC Data Set Approved
1993 MMC Coordination Group Formed
1996 CMC Coordination Group Formed
1997 MIL-HDBK-17 Vol. 1E, 3E
1998 Joint Meetings with ASTM D-30
1999 MIL-HDBK-17 Vol. 2E, Vol. 4
2002 MIL-HDBK-17 Vol. 1F, 2F, 3F, 4A, 5 Commercial Publication through ASTM
2004 Joint Meetings with CACRC, SAE-P17
2006 Transition from Army to FAA as Primary Sponsor Established Roadmap to New Composite Materials Handbook “Release G”
2006: Transition from Army to FAA as Primary Sponsor Established Roadmap to New Composite Materials Handbook “Release G”
2012: Began Updating CMH-17 Vol. 5 (significant revision)
2017 Release of Vol. 5A – CMH-17 Handbook
2013 Release of Vol. 6, 4B – CMH-17 Handbooks
2012 Release of Volumes 1-3 Rev G – CMH-17 Handbooks

Previous CMC handbook issued ~15 years ago

PMC: Polymer Matrix Composites
MMC: Metal Matrix Composites
CMC: Ceramic matrix Composites
Ceramic Matrix Composite (CMC) Components for Commercial Aircraft Require Certification

- CMC components have begun to enter service in commercial aircraft.
- A wide range of issues must be addressed prior to certification of this hardware.
- The FAA is working with the CMC community to identify and document best practices for means of compliance to the regulations.
Certifying Composite Materials

- Composites are currently only certified as part of a Product (aircraft, engine, propeller).

 There is no process to “certify” stand-alone composite materials for use in aviation products

- For CMCs: The FAA is currently defining means of compliance directly with applicant companies.

For further details see Ref. 1
What is the Importance of CMH-17 Volume 5 – Ceramic Matrix Composites?

• Many steps are required to develop, validate, and document CMC materials for use in commercial aviation products. **Our objective: CMH-17 Vol 5 will describe industry best practices / industry consensus standards.**

Linking CMH-17 to FAA Certification

- FAA guidance may reference industry publications, as shown below for AC 20-107B “Composite Aircraft Structure”

> (2) Existing references (e.g., The Composite Materials Handbook (CMH-17) Volumes 1 and 3, FAA Technical Report DOT/FAA/AR-03/19), addressing composite qualification and equivalence and the building block approach, provide more detailed guidance regarding batch and test numbers and the appropriate statistical analysis up to laminate level. Changes at higher

- If no FAA guidance exists, applicants are encouraged to follow industry standards, like CMH-17
Volume 5 Goals

1. Provide information that will help simplify the process of assuring that CMCs are safe for use in aviation.

2. Document “best practices” for CMC design, processing, and operation.

3. Document test and analysis methods that can be used to show compliance to civil and military aviation regulations.

4. Provide characterization, property, and performance data of current and emerging ceramic matrix composite systems.
Status of CMH-17 Volume 5—Ceramic Matrix Composites

• The Composite Materials Handbook-17, Volume 5 on ceramic matrix composites has just been revised to support certification of CMCs for hot structure and other elevated temperature applications, *and it is now available*.

• The handbook supports the development and use of CMCs through publishing and maintaining proven, reliable engineering information and standards that have been thoroughly reviewed.
Updated Handbook is Available

Composite Materials Handbook Volume 5. Ceramic Matrix Composites

The fifth volume of this six-volume compendium publishes technical guidance and properties on ceramic matrix composite material systems. The selected guidance on technical topics related to this class of composites includes material selection, processing, characterization, testing, data reduction, design, analysis, quality control, application, case histories, and lessons learned of typical ceramic matrix composite materials. Volume 5, which covers ceramic matrix composites, supersedes MIL-HDBK-17-5 of June 17, 2002.

The Composite Materials Handbook, referred to by industry groups as CMH-17, is an engineering reference tool that contains over 1,000 records of the latest test data for polymer matrix, metal matrix, ceramic matrix, and structural sandwich composites. CMH-17 provides information and guidance necessary to design and fabricate end items from composite materials. It includes properties of composite materials that meet specific data requirements as well as guidelines for design, analysis, material selection, manufacturing, quality control, and repair.

The primary purpose of the handbook is to standardize engineering methodologies related to testing, data reduction, and reporting of property data for current and emerging composite materials. It is used by engineers worldwide in designing and fabricating products made from composite materials.

25% DISCOUNT on purchases of multiple volumes! Please contact customer service to have the discount applied.

1-877-606-7323 (U.S. and Canada)

http://books.sae.org/r-426/
CMH-17 CMC Coordination Group

~ 300 total members on PMC, CMC, and MMC rosters

Handbook Chairs
Larry Ilcewicz, FAA
Curtis Davies, FAA

Executive Group
(PMC, MMC & CMC WG Chairs)

CMC Coordination Group
Curtis Davies, FAA

PMC Coordination Group
Larry Ilcewicz, FAA
Curtis Davies, FAA

MMC Coordination Group
Brad Lerch, NASA

Permanent Working Groups

Data Review
Rajiv Naik, Pratt & Whitney

Design and Analysis
David Thomas, Rolls-Royce
Mitch Petervary, Boeing

Guidelines
Curtis Davies, FAA

Materials & Processes
Doug Kiser, NASA GRC
Kaia David, Boeing

Testing
Jennifer Pierce, UDRI
William Keith, Boeing
Greg Wilson, GE Aviation
Volume 5 Handbook Outline

- Handbook grouped into 4 sections – each linked to specific working groups
 - **Part A: Introduction and Guidelines**
 - Materials and Processes WG
 - **Part B: Design Supportability**
 - Design & Analysis WG
 - **Part C: Testing**
 - Testing WG
 - **Part D: Data Requirements and Data Sets**
 - Data Review WG
Provide standardized data and information by:

- Establishing and Maintaining Active CMC Working Groups (WG)
 - Monthly WG Telecons – coordinate updating activities (Key)
 - Review and discuss progress, with a focus on specific subsections
 - Periodic review of content to identify gaps
 - Determine the agenda for upcoming meetings
 - Continue to recruit volunteers (increase group capability)

- Periodically holding coordination meetings to discuss critical issues
 - Annually with USACA (U.S. Advanced Ceramics Assoc.) in Cocoa Beach, FL
 - May hold additional meetings in conjunction with other CMC events such as the FAA CLEEN (Continuous Lower Energy, Emissions, and Noise Program) consortium
Approach Used to Update Vol 5 Content

Example: M&P WG Subsection Review Cycle

1. Subsection drafted / revised by SME (subject matter experts) in M&P WG
2. Next: Review within M&P WG and by other approved SME
3. Yellow Pages Review (by CMC “membership”)
4. Final formatting / cleanup by Wichita State Univ. (CMH-17’s Secretariat)
5. Ready for inclusion in revised CMH-17 Vol 5
CMC Working Group Activities

- Materials and Processes
- Testing
- Data Review
- Design and Analysis
Materials & Processes WG

Goals:

- To provide a comprehensive overview of ceramic matrix composite (CMC) technology, outlining the types of CMCs, commercial aircraft applications, benefits, methods of fabrication, quality control, and supportability.

- To identify the essential information on composition, constituents/structure, and processing of CMCs necessary to support design, selection, fabrication, certification, and utilization of CMC structures.

- To specify the methods and procedures to be used in the characterization of ceramic matrix composites, their coatings, and their constituents. Efforts need to be coordinated with the Testing Working Group.
New or Revised M&P Subsections

• CMC Systems: Processing, Properties & Applications
• Fiber / Reinforcement Types and Technology
• Interphase / Interface Technology and Approaches
• Fabrication and Forming of Fiber Architectures
• External Protective Coatings for Non-Oxide CMCs
• External Protective Coatings for Oxide CMCs
• Characterization Methods
• NDE Methods for CMCs
• Machining

• Quality Control of Production Materials and Processes

• Applications, Case Histories, and Lessons Learned
New M&P Subsections - examples
Vision Statement:
• To be the primary and authoritative source for recommended/required methods for testing characterization of CMCs & their constituents

Goals:
• To identify appropriate existing consensus standard test methods (such as ASTM Standards) for CMCs and their constituent materials
• To assist in the identification/development of appropriate standard test methods for CMCs and their constituent materials, where no such standards exist
New Testing Subsections

- Density
- Tensile Testing
- Shear Testing
- Notched Testing
New Testing Subsections - examples

13.6 TENSILE TESTING

13.6.1 Applicability

Tensile properties are important to design as laminated ceramic matrix composites are prone to delamination cracking through the un-reinforced matrix, perpendicular to the plane of the fiber reinforcement. Of interest to designers are the strength, modulus, Poisson's ratio, and strain to failure of the composite.

13.6.2 Test Methods

There are several ASTM and other standards for the measurement of interlaminar shear properties of ceramic matrix or other composite materials. Those references identified are listed in Table 13.6.2.

<table>
<thead>
<tr>
<th>Method</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM C1275</td>
<td>Monotonic Tensile Behavior of Fiber-Reinforced Advanced Ceramic Matrix Composites at Ambient Temperatures</td>
</tr>
<tr>
<td>ASTM C1359</td>
<td>Monotonic Tensile Behavior of Fiber-Reinforced Advanced Ceramic Matrix Composites at Elevated Temperatures</td>
</tr>
<tr>
<td>HSR-EPDM-D-001-93</td>
<td>Monotonic Tensile Testing of Intermetallic Matrix and Interlaminar Shear Properties</td>
</tr>
<tr>
<td>ASTM D3039</td>
<td>Tensile Properties of Ceramic Matrix Composites</td>
</tr>
</tbody>
</table>

13.9.2 Applicable Test Methods for CMC Resin

<table>
<thead>
<tr>
<th>Method</th>
<th>Title</th>
<th>Materials</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM C1292</td>
<td>Standard Test Method for Shear Strength of Continuous Fiber-Reinforced Advanced Ceramics at Elevated Temperatures</td>
<td>CMCs</td>
<td>RT/E</td>
</tr>
<tr>
<td>ASTM C1425</td>
<td>Interlaminar Shear Strength of 1-D and 2-D Continuous Fiber-Reinforced Advanced Ceramics at Elevated Temperatures</td>
<td>CMCs with oxide, SiC, glass (amorphous) matrices</td>
<td>ET</td>
</tr>
<tr>
<td>ASTM D3946</td>
<td>Standard Test Method for In-Plane Shear Strength of Reinforced Plastics</td>
<td>Plastics</td>
<td>RT/E</td>
</tr>
<tr>
<td>ASTM D2344</td>
<td>Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and their Laminates</td>
<td>PMCs</td>
<td>RT/E</td>
</tr>
<tr>
<td>ASTM D3518</td>
<td>Standard Test Method for In-Plane Shear Response of a Polymer Matrix Composite Material by Tensile Test of a e/2 Laminate</td>
<td>PMCs</td>
<td>RT/E</td>
</tr>
<tr>
<td>ASTM D5379</td>
<td>Standard Test Method for Shear Properties of Composite Materials by the V-Notched Beam Method</td>
<td>PMCs</td>
<td>RT/E</td>
</tr>
<tr>
<td>ASTM D7078</td>
<td>Standard Test Method for Shear Properties of Composite Materials by V-Notched Radial Shear Method</td>
<td>PMCs</td>
<td>RT/E</td>
</tr>
</tbody>
</table>

13.11 NOTCHED TESTING

Notched testing of CMCs is often motivated by the desire to develop design strength values that address the presence of damage including manufacturing defects, impact damage, and structural penetrations. Using damaged based strengths can ensure robust designs.

13.11.1 Notched Test Methods

Currently, there are no test methods specifically written for testing CMCs with notches or damage. Yet, the methods written for PMCs can often be adapted for CMCs. Methods for PMCs include tests of laminates with holes and of laminates with damage, typically generated by controlled impacts. Table 13.11.1 provides a list of these test methods. They are frequently adapted for the notch testing of CMCs.

<table>
<thead>
<tr>
<th>Method</th>
<th>Title</th>
<th>Materials</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM D5766</td>
<td>Open-Hole Tensile Strength of Polymer Matrix Composite Laminates</td>
<td>PMCs</td>
<td>RT/E</td>
</tr>
<tr>
<td>ASTM D6484</td>
<td>Open-Hole Compressive Strength of Polymer Matrix Composite Laminates</td>
<td>PMCs</td>
<td>RT/E</td>
</tr>
<tr>
<td>ASTM D6742</td>
<td>Filled-Hole Tension and Compression Testing of Polymer Matrix Composite Plates</td>
<td>PMCs</td>
<td>RT/E</td>
</tr>
<tr>
<td>ASTM D7137</td>
<td>Compressive Residual Strength Properties of Damaged Polymer Matrix Composite Plates</td>
<td>PMCs</td>
<td>RT/E</td>
</tr>
</tbody>
</table>

13.11.2 Considerations for Notch Testing of CMCs

CMCs are used in temperatures and environments much different than standard laboratory conditions. It is often challenging to replicate these environments during testing yet it is important that they are considered. Chemical and physical reactions at the notch tip can significantly affect the performance of CMCs particularly for repeated loading and long duration exposures. Thus, for CMCs that are sensitive to environmental degradation, e.g. non-oxide CMCs in hot oxidizing environments, investigators may need to test notched specimens in fatigue or for long durations in the appropriate environments to establish their service capability.
Data Review Working Group

Vision Statement:
• Formulate guidelines & requirements for submission (batch size, etc.), documentation, analysis, and review for all CMC data that are submitted for inclusion in the handbook.
• Review the data and the analysis of data sets that are submitted for inclusion in the handbook.
• Develop formats for presentation of data in the handbook and for its storage in electronic databases.
• Develop and document statistical methods for pooling and analysis of CMC data.

Key Issues:
• Export classification of data that is submitted to the handbook
• Storage and dissemination of ITAR data
• Appropriate electronic Database choice for data storage and dissemination (with export restricted access as needed)
• Sources of new CMC data
Currently not ITAR restricted

<table>
<thead>
<tr>
<th>Composite Name</th>
<th>Composite Description</th>
<th>Producer</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/99 EPM SiC/SiC</td>
<td>Sylramic™/BN-Si/MI SiC</td>
<td>Ceramic Composite Products</td>
</tr>
<tr>
<td>Enhanced SiC/SiC</td>
<td>CG Nicalon™/Carbon/CVI SiC</td>
<td></td>
</tr>
<tr>
<td>Carbon/SiC</td>
<td>T300/Carbon/CVI SiC</td>
<td></td>
</tr>
<tr>
<td>Hi-Nicalon/MI SiC</td>
<td>Hi-Nicalon™/BN/MI SiC</td>
<td>COI Ceramics</td>
</tr>
<tr>
<td>AS-N720-1</td>
<td>Nextel 720/alumino-silicate</td>
<td></td>
</tr>
<tr>
<td>Sylramic S-200</td>
<td>CG Nicalon™/BN/PIP Si₃N₄-SiC</td>
<td></td>
</tr>
</tbody>
</table>

- New CMC data to be included in future revisions
- Currently working with organizations to obtain data
New Data Review Subsections

- Data Submission Requirements
- Calculation of Statistically Based Material Properties
- Statistical Methods for Material Equivalence and Acceptance
New Data Review Subsections - examples
Design and Analysis Working Group

Goals:

• To provide information on design and analysis methods and options, the level of substantiation required, and presentation formats required in validation and certification processes

• To ensure future relevancy of the handbook by maintaining an up to date survey of the current state of the art capabilities within the design, analysis and lifing communities for CMCs

Challenges:

• Creating a document that contains meaningful and valuable content for both industry and government entities while honoring the highly proprietary nature of corporate design practices
New Design & Analysis Subsections

- Definition of Application & Design Requirements
- CMC Component Design and Analysis Considerations
- Verification by Analysis for Material and Component
Summary / Plans for the Future

- The Composite Materials Handbook-17, Volume 5 on ceramic matrix composites has just been revised and released with significant new material useful as a guide for CMCs:
 - CMC Materials / Processing
 - Design / Analysis Guidelines
 - Testing Procedures
 - Data Analysis and Acceptance
- Developed over a 5 year period w/ approximately 100 volunteers
- Publication – through SAE International
- WGs will continue to update the content and are currently seeking volunteers
- A further update of Volume 5 by 2023 will be our new goal
Moving Forward......

Individuals interested in contributing to the CMC working groups should please forward their contact information to Rachael Andrulonis (rachael@cmh17.org) and/or talk to any Working Group member.

Next Meeting to Discuss CMH-17 Vol 5:
Annual Meeting @ USACA – January 2018
Continue:
Monthly Teleconferences for Working Groups and Coordination