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  Modeling	
  Fluidized	
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U = 0.72 m/s 
LLDPE  
(1.15 mm, 800 kg/m3)  

0.40 

3.00 

Vg [m/s] 

0.2x real time 

Objective:  
Establish computational framework for 
distribution of gas-flow and time-scales 
of different components 

	
  Present	
  Study	
  

D = 50 cm 
H0 = 50 cm    

3	
  

Take-Aways:  
-  Substantial fraction of gas escapes 

through bubbles and has significantly 
lower residence time  

-  Throughflow related to voidage 
distribution around bubbles and the rate 
of bubble rise  



Fluidization	
  XV,	
  May	
  23	
  2016	
  

	
  Outline	
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Model &Tools 
-  Two Fluid Model 
-  Bubble Statistics
-  Validation  
-  Bubbling in large beds

Gas Distribution
-  Bubble phase
-  In and around bubbles 
-  Throughflow 
-  Operating Conditions 



•  Solid and gas phases fully interpenetrating continua using generalized NS equations 
•  Computationally efficient  
•  Conservation equations coupled with constitutive relationships 

	
  
	
  

	
  	
  

	
  
	
  

 
The TFM has been implemented using MFiX (Multiphase Flow with Interphase eXchanges) 
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  Two-­‐Fluid	
  Model	
  

Plastic Flow 
(Frictional Theory)  

Viscous Flow 
(KTGF) 

Blend function 

Solid Phase Stress Tensor 
Particle-Particle Interactions  

Drag Law 
Gidaspow Model 
more suited to 
lower fluidization 
velocities  

experimentalmeasurements by Rüdisüli et al. [20] and Verma et al. [19]
in Section 5.3 while only the former is considered and scaled-up for the
sensitivity study in Section 5.4. In [20], cold fluidization was carried out
in a glass column with internal diameter 14.5 cm using alumina parti-
cles. The vertical bubble cord length was measured using reflective-
type optical probes at a sampling frequency of 400 Hz. Further, bubble
velocity was measured using a bubble linking algorithm by measuring
the response using two such probes placed 1 cm apart. Meanwhile,
Verma et al. [19] used a polycarbonate cylindrical tube with internal di-
ameter 0.1m. Themeasurements in this setupwere done at three cross-
sections of the bed using an ultrafast electron beam X-ray scanner ac-
quiring data at 1000 Hz with a high spatial resolution of about 1 mm.
The images were then processed using an in-house reconstruction soft-
ware to reveal time and spatially resolved bubbles. Both setupswere op-
erated in the regime of bubbling fluidization using Geldart B particles
made of glass, alumina and LLDPE spanning a wide range of particle
properties. A summary of all the experimental conditions and particle
properties is presented in Tables 1 and 2 respectively.

3. Simulation setup

3.1. Governing equations

For the present study, the Two Fluid Model (TFM) is used which de-
scribes both the solid and gas phases as inter-penetrating continua. The
governing equations, therefore, are similar to those used to describe
single-phase fluid flow. For the case of cold fluidization with no chemi-
cal reactions, the continuity equations reduce to

∂
∂t εkρkð Þ þ∇ $ εkρk V

!
k

! "
¼ 0 ð1Þ

while the momentum equations may be represented as

∂
∂t εkρk V

!
k

! "
þ∇ $ εkρk V

!
k V
!

k

! "
¼ ∇ $ Sk−εk∇Pg þ εkρk g

!

þ δkm I
!

gm−δkg I
!

gm

! "
ð2Þ

δki ¼
1 if k ¼ i
0 otherwise

#
ð3Þ

where ε, ρ and V
!

represent the volume fraction, density and velocity
with the subscript k denoting the gas (k = g) or solid (k = m) phases
and εm = 1 − εg. The terms εk∇Pg and εkρk g

! in Eq. (2) represent the
buoyancy and gravity forces respectively. The computation of the gas

phase stress tensor Sg is identical as in single-phase fluid flow. Mean-
while, evaluation of the solid phase stress tensor is based on theflow re-
gime, i.e., the local packing fraction of the solid phase in comparison to
the critical void fraction εg⁎ typically determined by themaximumpack-
ing limit of the solid particles [6]. For particle–dilute pockets of the bed
i.e., εg N εg⁎, inelastic collisions between particles primarily contribute to

the stress tensor. This is known as the viscous regime and the stress ten-
sor is evaluated using theKinetic Theory of Granular Flow (KTGF). In the
densely packed regions of the bed i.e., εg ≤ εg⁎, there is enduring contact
between the particles (plastic flow regime) and the theory of Schaeffer
is employed to account for the frictional effects [41]. Thus, the solids
stress tensor may be generally described by

Sm ¼
−Pp

mI þ τpm ifεg ≤ ε&g
−Pv

mI þ τvm ifεg N ε&g

(
ð4Þ

where Pm is the pressure,τm is the shear stress with superscripts p and v
denoting the plastic and viscous regimes respectively, and the evalua-

tion of the stress tensor Sm for these two regimes is blended using a hy-
perbolic tangent function around εg⁎ [6]. The computation of the stress
tensor is based on the solid phase pressure and viscosity which are
both dependent on the granular temperature Θ [42]. The granular tem-
perature is a measure of the specific kinetic energy of the random fluc-
tuating component of the particle velocity and is computed using the
transport equation given by

3
2

∂ εmρmΘmð Þ
∂t þ∇ $ εmρm V
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! "$ %
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The transport equation considers the productionSm : ∇V
!

m, diffusion
∇ $ q!Θm

, dissipation through inelastic collisions γΘm
and to the fluid

(viscous) ϕgm all of which are modeled using the KTGF.

A final closure is required for the fluid–solid drag force I
!

gm which
plays a significant role in the fluidization phenomenon [6]. For the pres-
ent study, two dragmodels have been considered based on the fluidiza-
tion regime. The Gidaspow drag model combines the Ergun model and
the Wen–Yu model for the dense and dilute regimes respectively [14]:
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Table 1
Experimental conditions.

Rudisuli et al. [20]
Bed diameter 0.145 m
Static bed height 0.5 m
Measuring height 0.23 m, 0.45 m
U/Umf 2.3–6.8

Verma et al. [19]
Bed diameter 0.1 m
Static bed height 0.2 m
Measuring height 0.05 m, 0.1 m, 0.2 m
U/Umf 1.25–3.0

Table 2
Solid properties: particles used by Rüdisüli et al. [20] are used for simulating the 14.5 cm
lab-scale and 30 cm pilot-scale beds, while particles used by Verma et al. [19] are used in
the simulations presented in Section 5.3.2.

Type Density Diameter Umf

[kg/m3] [mm] [m/s]

Rüdisüli et al. [20]
Alumina 1350 0.289 0.041

Verma et al. [19]
LLDPE 800 1.1 0.24
Alumina 1040 1.0 0.32
Glass 2526 1.0 0.67
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  3D	
  Bubble	
  Statistics	
  

Size distribution Spatial distribution

√
gdb [m/s]

0.4 0.8 1.2 1.6

v b [m
/s

]

0.0

0.5

1.0

1.5

2.0

sim.
ubr
uHW,B
uHW,D

Fluidization	
  XV,	
  May	
  23	
  2016	
  

Velocity distribution

MS3DATA (Multiphase-flow 
Statistics using 3D Detection & 
Tracking Algorithm): tool for 
accurate and scalable bubble 
statistics using time-resolved 
volumetric void fraction 

ü  Eliminates need for image 
processing software  

ü  Flexible - can be integrated 
with other variables to 
investigate flow field in detail 
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Validation with independent experiments – global parameters, bubble dynamics and solids motion
Critical sub-models – wall boundary condition (lab-scale beds), gas-solid drag model 
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  Validation	
  

ECT measurements by 
Makkawi et al 2004

Glass (0.35 mm, 2500 kg/m3) 
Bed Diameter = 13.8 cm 

Optical probe measurements 
by Rüdisüli et al 2012

Alumina (0.29 mm, 1350 kg/m3) 
Bed Diameter = 14.5 cm  

X-Ray measurements by 
Verma et al 2014

(~1.0 mm, 800-2500 kg/m3) 
Bed Diameter = 10.0 cm  

0.00 0.03 0.06 0.090.0

0.1

0.2

A
xi

al
 H

ei
gh

t [
m

]
Bubble Diameter [m]

 

 

φ = 0.0005
φ = 0.001
φ = 0.01
φ = 0.1
φ = 0.3

0.00 0.03 0.06 0.09
Bubble Diameter [m]



Validation with independent experiments – global parameters, bubble dynamics and solids motion
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  Validation	
  

PEPT measurements by 
Laverman et al 2012

Glass (0.5 mm, 2500 kg/m3)
LLDPE (1.15 mm, 800 kg/m3) 

Bed Diameter = 30 cm 

Glass U/Umf = 2.5 LLDPE U/Umf = 2.5 

LLDPE U/Umf = 3.5  Glass U/Umf = 3.5  

Exhaustive validation 
for bubbling fluidization 

of Geldart B particles 



D =    15 cm 30 cm 50 cm 70 cm 
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  Bubbling	
  in	
  Large	
  Beds	
  

LLDPE (1150 microns)
Sand (500 microns)
D = 15 cm – 70 cm
H0 = 10 cm – 75 cm 
U/Umf = 2, 3 

Takeaways – 
1.  Predictions scalable when (a) bubbles small 

compared to bed dimensions and (b) solids 
circulation consistent across scales 

2.  Hydrodynamics in 50 cm bed (H/D ~ 1) are 
independent of wall effects

 

Hgs 

slugging	
  

bubbling	
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Model &Tools 
-  Two Fluid Model 
-  Bubble Statistics
-  Validation  
-  Bubbling in large beds

Gas Distribution
-  Bubble phase
-  In and around bubbles 
-  Throughflow 
-  Operating Conditions 
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  Gas	
  Flow	
  Distribution	
  

Reduced	
  Order	
  Modeling	
  	
  

Total Gas Flow =

Bubble 
Centroid 

Bubble 
Boundary 

ϵg = ϵg,b 

Dense 
Phase 

Through-
flow Gas 

dense flow	
   + visible bubble flow	
   + through-flow	
  

Bubble swarms offer low-resistance 
pathway for shortcut of gas => 
minimal contact with dense phase
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  Bubble	
  Phase	
  

0.10 

0.05 

0.00 

r/R [-]
0.0 0.5 1.0

B
ub

bl
e 

C
ou

nt
 [f

ra
m

e-1
]

10-3

10-2

10-1

100

y = 0.05 m
y = 0.15 m
y = 0.30 m
y = 0.45 m

Ub= Φ(d0.5) => Qb = Ubδ increases

Spread in bubble velocities because of
1.  Bed geometry 
2.  Wall effects 
3.  Bubble interaction, coalescence
4.  Local solids porosity, velocity
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  In	
  and	
  Around	
  Bubbles	
  

0.7 0.6 0.5 εmf

r 
εgb 

Ub vg 

•  Common assumption that ALL of 
dense-phase can be assumed to be 
minimally fluidized

•  Exponential decay of voidage, gas 
velocity but significantly higher 
than min. fluidization

outside 
bubble 

inside 
bubble 

r 

εgb 

Areas frequented by bubbles have 
higher dense-phase voidage 

Bubbles get sucked into areas 
already occupied by bubbles - 
explains preferential pathways for 
bubble flow 
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Distance from bubble 
boundary [cm] 

Distance from bubble 
boundary [cm] 

11.0s 11.4s 11.8s

1

1

1

11

11

11



ϵd/ϵmf [-]
1.0 1.2 1.4

A
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 D
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ta
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e 

[m
]

0.0

0.1

0.2

0.3

0.4

0.5
LLDPE 2Umf
LLDPE 3Umf

Ud/Umf [-]
0 1 2 3

High bubble 
frequency 
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  In	
  and	
  Around	
  Bubbles	
  

0.7 0.6 0.5 εmf

r 
εgb 

Ub vg 

•  Common assumption that ALL of 
dense-phase can be assumed to be 
minimally fluidized

•  Exponential decay of voidage, gas 
velocity but significantly higher 
than min. fluidization

outside 
bubble 

inside 
bubble 

r 

εgb 

Overall, minimally fluidized dense-phase is a 
reasonable assumption except in areas of high 
bubble frequency (lower half of deep beds or 
shallow beds) 	
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Distance from bubble 
boundary [cm] 

Distance from bubble 
boundary [cm] 



0.7 0.6 0.5 εmf

r 
εgb 

Ub vg 

	
  ThroughLlow	
  

Throughflow increase related to

•  Local permeability in the dense-phase 
(vicinity of bubbles v/s far away) 

K α ε3d2/(1-ε)2

11.00 s  11.04s  11.08 s  11.12 s  

Gas flow in the vicinity is 
sucked into the bubbles !
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Distance from bubble 
boundary [cm] 



	
  ThroughLlow	
  

Throughflow increase related to

•  Local permeability in the dense-phase 
(vicinity of bubbles v/s far away) 

K α ε3d2/(1-ε)2

Bubble Diameter [m]
0.00 0.08 0.16 0.24

U
tf
/U

b [-
]

0

1

2

3

4
LLDPE 2Umf
LLDPE 3Umf

AR [-]
0.0 0.5 1.0 1.5 2.0

•  Bubble rise < interstitial velocity
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0.7 0.6 0.5 εmf

r 
εgb 

Ub vg 

Distance from bubble 
boundary [cm] 



	
  ThroughLlow	
  

Throughflow increases related to

•  Local permeability in the dense-phase 
(vicinity of bubbles v/s far away) 

K α ε3d2/(1-ε)2

Bubble Diameter [m]
0.00 0.08 0.16 0.24

U
tf
/U

b [-
]

0

1

2

3

4
LLDPE 2Umf
LLDPE 3Umf

AR [-]
0.0 0.5 1.0 1.5 2.0

High bubble 
frequency

•  Bubble rise < interstitial velocity 

Most of increase in gas flow constituting 
throughflow close to distributor ! 
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0.7 0.6 0.5 εmf

r 
εgb 

Ub vg 

Distance from bubble 
boundary [cm] 
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•  Residence time normalized by t0    
(assuming homogeneous mixing) 

•  Inhomogeneity in mixing represented by              
(a) % throughflow and (b) td/ttf

LLDPE 2Umf à 3Umf 
-  Dense phase decreases from 58% à 40%

-  Throughflow increases from 23% à 39% and 
Utf/Ud  ~ 2.0-2.5

⇒ For large particles, 70% of the 
additional gas supplied bypasses 
through bed 
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through-flow 
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  Operating	
  Conditions	
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  Summary	
  

What does this mean for reactor design ? 
-  Throughflow v/s mixing – better distributor/injection design to control bubble dynamics

-  Multiple gas inlets because increasing U/Umf for larger particles => better axial mixing of solids
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computational framework for gas-flow distribution 
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