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Present Study Mir

Objective:
Vg [m/s] Establish computational framework for
distribution of gas-flow and time-scales
3.00 of different components
Take-Aways:
- Substantial fraction of gas escapes
through bubbles and has significantly
0.40 . .
lower residence time
- Throughflow related to voidage
\ D=50cm distribution around bubbles and the rate
H, =50 cm of bubble rise
U=0.72 m/s
LLDPE
0.2x real time (1.15 mm, 800 kg/m°)
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Two-Fluid Model Mir

* Solid and gas phases fully interpenetrating continua using generalized NS equations
e Computationally efficient

* Conservation equations coupled with constitutive relationships

a — — — = N — —
a <8kpk Vk) + V- (8kpk Vk Vk) =V Sk_gkvpg +EPrE + ((Skm Igm_6kg Igm)

-G ¢=0.1
Solid Phase Stress Tensor Drag Law 0s. ngj):g..c:oos
' + 8B ¢ =0.0005
Particle-Particle Interactions Gidaspow Model
more suited to —06
=0,
—  Blend function @O\% lower fluidization %
— oY O— velocities 2.,
Y OB
Plastic Flow Viscous Flow 0.2
(Frictional Theory) (KTGF)

°%%00 005 010 0.5

Bubble Diameter [m]
The TFM has been implemented using MFiX (Multiphase Flow with Interphase eXchanges)
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3D Bubble Statistics

MS3DATA (Multiphase-flow
Statistics using 3D Detection &
Tracking Algorithm): tool for
accurate and scalable bubble
statistics using time-resolved
volumetric void fraction

v" Eliminates need for image
processing software

v" Flexible - can be integrated
with other variables to
investigate flow field in detail
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Validation

Validation with independent experiments — global parameters, bubble dynamics and solids motion

Critical sub-models — wall boundary condition (lab-scale beds), gas-solid drag model

ECT measurements by
Makkawi et al 2004

Glass (0.35 mm, 2500 kg/m?)
Bed Diameter = 13.8 cm

0.8

—Cylindrical (0.54 m/s)
0.7---Cylindrical (0.80 m/s)
X Experiment (0.54 m/s)
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Optical probe measurements
by Rudisili et al 2012

Alumina (0.29 mm, 1350 kg/m?3)
Bed Diameter = 14.5 cm
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X-Ray measurements by

Verma et al 2014

(~1.0 mm, 800-2500 kg/m?3)
Bed Diameter = 10.0 cm

0.2
0.1 —+¢ = 0.0005
-0-¢ = 0.001
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°o¢=0.1
¢ =0.3
0OQOO 0.03 0.06 0.090.00 0.03 0.06 0.09
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Validation

Validation with independent experiments — global parameters, bubble dynamics and solids motion

PEPT measurements by
Laverman et al 2012

Glass (0.5 mm, 2500 kg/m?3)
LLDPE (1.15 mm, 800 kg/m?3)
Bed Diameter = 30 cm

Exhaustive validation
for bubbling fluidization
of Geldart B particles
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Bubbling in Large Beds

LLDPE (1 150 microns) 15cm 50 cm
Sand (500 microns)
D=I5cm-70cm
Ho=10cm-75cm
U/U, =23
slugging
o LLDPE /
® Glass
0.9 ,
— o/ ©® bubbling
_ /
Ov : :
= 0.6 K 0 100 05 1000 0.5 10
Ig a,’ ; “ v r'R [-] r/R [-] rR [-]
0.3 ° % | %
// : @ Takeaways -
/’ Hos O§ |. Predictions scalable when (a) bubbles small
o e : : .
0 . compared to bed dimensions and (b) solids

0 20 40
2
gDI(U-U_)? [

60 circulation consistent across scales

2. Hydrodynamics in 50 cm bed (H/D ~ ) are
independent of wall effects
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Gas Flow Distribution

Reduced Order Modeling

Total Gas Flow = dense flow + visible bubble flow + through-flow

Bubble swarms offer low-resistance
pathway for shortcut of gas =>
minimal contact with dense phase

Bubble
Boundary

€5 = Cgp

Bubble
Centroid

flow Gas

Through-

sohe:
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Bubble Phase Mir

Spread in bubble velocities because of

. Bed geometry
2. Wall effects
3. Bubble interaction, coalescence

4. Local solids porosity, velocity

0.5 ‘ ‘
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In and Around Bubbles

«  Common assumption that ALL of 1.0
dense-phase can be assumed to be
minimally fluidized 08

* Exponential decay of voidage, gas
velocity but significantly higher
than min. fluidization

e, [

I'1.0s I'1.4s I'1.8s

0.6+

inside

bubble !

1.4

o >
outside i > 0.6
bubble ’

0.2 : :
0 3 6 9
>m bubble Distance from bubble
ry [cm] boundary [cm]

Areas frequented by bubbles have
higher dense-phase voidage

Bubbles get sucked into areas
already occupied by bubbles -
explains preferential pathways for
bubble flow
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In and Around Bubbles

Common assumption that ALL of 1.0 ‘ | — 1.4 | |
dense-phase can be assumed to be r [

- - | u
minimally fluidized 0.8 nside =10 "~ Iv,
Exponential decay of voidage, gas - bubble "o :
velocity but significantly higher v — 2

. - . 0.6 outside 1> 06!
than min. fluidization bubble
€ ‘ i ! 2 . .
I Mg 4 o0 a4 8 0 38 6 9
0o -o-LLDPE2U . Distance from bubble Distance from bubble
" -o-LLDPE3U_ boundary [cm] boundary [cm]
High bubble
frequency . . .
Overall, minimally fluidized dense-phase is a
reasonable assumption except in areas of high
i bubble frequency (lower half of deep beds or
u]
‘ ‘ ‘ shallow beds
10512 14 0 1 2 3 )
ed/emf [-1 Ud/Umf [-]
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Throughflow Mir

1.4

Throughflow increase related to
* Local permeability in the dense-phase — 1.0 ﬁ"g
. N e
(vicinity of bubbles v/s far away) = o
342/(1.s)2 o
K o €°d?/(1-¢) >%06
0.2 : . ‘
0 3 6 9 07 0.6 0.5 Emt
Distance from bubble €[]

boundary [cm]

S0 B 0 0

11.00 s 11.04s 11.08 s 1112 s

Gas flow in the vicinity is
sucked into the bubbles !
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Throughflow Mir

1.4

Throughflow increase related to
* Local permeability in the dense-phase — 1.0 ﬁ"g
. N e
(vicinity of bubbles v/s far away) = o
342/(1.s)2 o
K o €°d?/(1-¢) >%06
* Bubble rise < interstitial velocity
0.2 :
0 3 6 9
Distance from bubble
boundary [cm]
4 : ‘
o-LLDPE2U__
-0-LLDPE 3U
3t mf -

0 L I L L I
0.00 0.08 0.16 02400 05 1.0 15 20
Bubble Diameter [m] AR [-]
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Throughflow

1.4
Throughflow increases related to [
U,
* Local permeability in the dense-phase — 1.0 ; Tvg
(vicinity of bubbles v/s far away) ;.o :

K o €3d%/(1-¢€)? >%06

* Bubble rise < interstitial velocity

Most of increase in gas flow constituting 0.20 3 5 5
- '
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Operating Conditions

* Residence time normalized by t,
(assuming homogeneous mixing)

* Inhomogeneity in mixing represented by

(@) % throughflow and (b) t,/t

LLDPE 2Umf - 3Umf

- Dense phase decreases from 58% = 40%
- Throughflow increases from 23% —> 39% and

U /U, ~ 2.0-2.5

2.5

LLDPE 2Umf

% dense
bubble

2.01 & through-flow

"0 20 40 60 8

0 100

| LLDPE 3Umf

0 20 40 60

0 100

gas fraction [%] gas fraction [%]

= For large particles, 70% of the
additional gas supplied bypasses

through bed
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Summary IMii

In-house bubble statistics code (MATLAB) used for detailed investigation of flow-field and
computational framework for gas-flow distribution

Dense-phase ~ minimally Throughflow depends on 30-40% of gas flow may
fluidized except near distributor (@) local permeability and have 2x shorter residence
(b) bubble rise )
%1 % dense
1.0 ‘ . ‘ bubble
m%cbq\ o 2.01 % through-flow
1 r
0.8 inside ! - 1.5
— bubble ! —
2 | & 1.0
06" | o outside : =
i bubble
3 5 0.5
€ ‘ 3 ‘ 0.0 i

mf_8 4 0 4 3 0 20 40 60 80 100
Distance from bubble
boundary [cm]

gas fraction [%]

What does this mean for reactor design?

- Throughflow v/s mixing — better distributor/injection design to control bubble dynamics

- Multiple gas inlets because increasing U/U_ for larger particles7§ better axial mixing of solids
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