Stochastic Generation Expansion Planning

David Woodruff
University of California - Davis

Follow this and additional works at: http://dc.engconfintl.org/power_grid

Part of the Electrical and Computer Engineering Commons

Recommended Citation

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Modeling, Simulation, And Optimization for the 21st Century Electric Power Grid by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Stochastic Generation Expansion Planning

David L. Woodruff
dlwoodruff@ucdavis.edu
Graduate School of Management
University of California Davis
Davis, California, USA

Jean-Paul Watson
jwatson@sandia.gov
Discrete Math and Complex Systems Department
Sandia National Laboratories
Albuquerque, New Mexico, USA

Sarah M. Ryan
smryan@iastate.edu
Department of Industrial and Manufacturing Systems Engineering
Iowa State University
Ames, Iowa USA

October 2012
Introduction

- The GEP

- Stochastic GEP

- CVaR

- Chance Constraints

- Computational Results
The GEP

- Determination of the type, quantity, and timing of power plant construction.

- Two main cost components in GEP: investment (first stage) and generation (second stage).

- Minimize cost, with important constraints...

- Must meet “anticipated” demand for electricity.
Notation: Sets, Indices, and Parameters

Sets:

- \(g \in \mathcal{G} \): Types of generators.
- \(y \in \mathcal{Y} \): Years in planning horizon.
- \(t \in \mathcal{T} \): Load duration curve sub-periods.
- \(T_y \): Set of sub-periods \(t \) in year \(y \).
- \(Y_t \): Year \(y \) to which sub-period \(t \) belongs.
- \(\omega \in \Omega \): Scenario paths representing parameter uncertainties.

Parameters:

- \(c_g \): Cost per MW capacity to build a generator of type \(g \), discounted to the beginning of the construction period. Units are $/MW.
- \(m_g^{\text{max}} \): Maximum output capacity of installed generators of type \(g \). Units are MW.
- \(h_t \): Number of hours in sub-period \(t \).
- \(n_g^{\text{max}} \): Maximum output rating of generators of type \(g \) per hour. Units are MW.
- \(u_g^{\text{max}} \): Maximum number of generators of type \(g \) that can be constructed over the planning horizon.
- \(u_g \): Existing number of generators of type \(g \) at the beginning of the planning horizon.
- \(p_u \): Penalty cost for unserved energy. Units are $/MWh.
- \(r \): Annual interest rate, for cost discounting purposes.

The following parameters are defined for each scenario \(\omega \in \Omega \):

- \(l_{gt\omega} \): Generation cost per MW hour for generators of type \(g \) in sub-period \(t \), for scenario \(\omega \). Units are $/MWh.
- \(d_{t\omega} \): Demand per hour in sub-period \(t \) for scenario \(\omega \). Units are MW.
- \(\pi_\omega \): Probability that scenario \(\omega \) is realized; \(\sum_{\omega \in \Omega} \pi_\omega = 1 \).

Decision Variables:

- \(U_{gy} \in \mathbb{Z}^+ \): (Investment) Number of generators of type \(g \) to be built in year \(y \).
- \(L_{gt\omega} \geq 0 \): (Operations) The power generated by generators of type \(g \) per hour in sub-period \(t \) for scenario \(\omega \). Units are MW.
- \(E_{t\omega} \geq 0 \): (Operations) The unserved load per hour in sub-period \(t \) for scenario \(\omega \). Units are MW.
Constraints:

\[\sum_y U_{gy} \leq u^\max_g \quad \forall g \in \mathcal{G} \quad (1) \]

\[\sum_g L_{gt\omega} + E_{t\omega} = d_{t\omega} \quad \forall t \in \mathcal{T}, \omega \in \Omega \quad (2) \]

\[L_{gt\omega} \leq n^\max_g (u_g + \sum_{y \leq Y_t} U_{gy}) \quad \forall g \in \mathcal{G}, t \in \mathcal{T}, \omega \in \Omega \quad (3) \]
Minimization of Expected Cost

\[
\min_{U_{gy}, L_{gt\omega}, E_{t\omega}} \sum_{y \in Y} \sum_{g \in G} \frac{c_{gy} \max g{U_{gy}}}{(1+r)_{y-1}} + \sum_{\omega \in \Omega} \pi_{\omega} \xi_{\omega} \tag{4}
\]

where the per-scenario operational costs \(\xi_{\omega} \) are defined as:

\[
\xi_{\omega} = \frac{\sum_{y \in Y} \sum_{t \in T_{y}} \left(\sum_{g \in G} h_{tg_{\omega}} L_{tg_{\omega}} + p_{u} h_{t} E_{t\omega} \right)}{(1+r)_{y-1}} \quad \forall \omega \in \Omega \tag{5}
\]
Stochastics

- Extended time horizon, so there is uncertainty represented by scenarios.

- Use expected cost and/or CVaR

- Cost uncertainty, demand uncertainty modeled using GBM to generate scenarios

- Data from MISO and Korea

- (In Korea, demand uncertainty has historically been very low)

- Nuke uncertainty??? (e.g., upper bounds on Nukes)
Mean versus Risk? A Matter of Taste!

Conditional Value-at-Risk (CVaR) is a linear approximation of TCE
As a practical matter:

- CVaR is an expectation and can be optimized using the same machinery used for the expected value.

- CVaR solutions are often viewed as excessively costly, so CVaR is often combined with expected-cost minimization in a weighted multi-objective scheme (or the tail probability can be varied).

- CVaR gives a bound on VaR, so a VaR frontier can be obtained from the same process.
How Many Scenarios?

- For MISO data with uncertain price and demand: Hundreds.

- We looked at both confidence intervals and solution differences.
Chance Constraints

- With the advent of the smart grid, the thinking is that if generation capacity is inadequate, price signals will reduce demand.

- So from a long term planning perspective, some probability of “load shedding” might be OK.

- (but it must be limited)
A bit of notation

• ST: Service Threshold. Fraction of demand that must be satisfied when there is “load shedding.”

• CC: Probability of load shedding.
Conclusions

• Various forms of the 2-stage stochastic GEP are computationally tractable for full-scale data to support policy analysis.

Figure 1: The expected total costs over the planning horizon for the South Korean GEP, as a function of the probability of load shedding CC. Each point represents the average over 3 replicates. Each line represents costs for a different value of the service level threshold ST.
Figure 2: The expected total costs over the planning horizon for Midwest ISO GEP, as a function of the probability of load shedding CC. Each point represents the average over 2 replicates. Each line is for a different value of the service threshold ST.