Co-processing of Heavy Oil and Bio-oil in a Continuous Mechanically Fluidized Reactor

Ryan Lance
Dr. Ran Xu
Dr. Franco Berruti
Dr. Cedric Briens

Dr. Louis Hagey
Dr. Will Rogers
Project Funded by the Imperial Oil University Research Award Programme
Objectives

• Co-pyrolysis of bio-oil or biomass and heavy oil

• Can we get interesting chemicals and fuels from the combination of radicals from bio-oil/biomass and heavy oil?

• Operate at conditions relevant to industrial fluid cokers, which are currently used to convert heavy oil into synthetic crude
 • 350 000 B/d in Fort Mc Murray, Alberta
 • 100 000 B/d in Sarnia, Ontario
Rotating Air Cooling

Rotating Rods, driven by the motor

Air Cooling

Heavy Oil Injection

Bio-oil Injection

Gas/Vapors Exit

Rotating Blades

Sparger Distributor
Feeding System

2 Syringe Pumps

Combined Feeding Rate: 5 mL/min
Initial Reactor Temperature: 550°C

Viscosities:
Heavy Oil - 700cp @ 500°C
Sawdust Bio-Oil - 27.7 cp @ 25°C

High Heating Values:
Heavy Oil - 43.63 kJ/g
Sawdust Bio-Oil - 16.50 kJ/g

Moisture Content
Heavy Oil - 0%
Sawdust Bio-Oil - 28.68%
Experimental Results

% Recovered Liquid Hydrocarbons

% Bio-Oil Injected (Dry Basis)

% Yield of Recovered Hydrocarbons
Experimental Results

Solid Yield

% Solid Yield

% Bio-Oil Injected
Experimental Results

Product Moisture Content

\[\% \text{H}_2\text{O} \sim 0.4219 \times (\% \text{Bio-Oil Injected}) + 2.5656 \]

\[R^2 = 0.9808 \]
Experimental Results

% Water Formed in Pyrolysis Reactions

% Water Formed in Pyrolysis Reactions vs. % Bio-Oil Injected
Experimental Results

High Heating Value of Liquid Product

HHV = -0.282*(% Bio-Oil Injected) + 41.663

R^2 = 0.9966
High Heating Value (Dry Basis)

Experimental Results

HHV ~ -0.18*(% Bio-Oil Injected (Dry Basis)) + 42.56

$R^2 = 0.9871$

Experimental Results

HHV (Dry Basis) (kJ/g)

% Bio-Oil Injected (Dry Basis)
Experimental Results

% Energy Yield vs % Bio-Oil Injected

% Energy Yield:
- 70
- 68
- 66
- 64
- 62
- 60
- 58
- 56
- 54
- 52

% Bio-Oil Injected:
- 0
- 10
- 20
- 30
- 40
- 50
- 60
- 70
- 80
- 90
- 100

The graph shows the energy yield percentage (%) against the percentage of bio-oil injected. There are data points indicating a trend, but they are not clearly defined due to the limited data shown. The data points are at (0,58), (30,64), and (100,54).
Experimental Results

Elemental Analysis

- Hydrogen
- Oxygen
- Sulfur

Graph showing the percentage of Bio-Oil Injected (Dry Basis) vs. the percentage of each element (Dry Basis).
Experimental Results

H/C Ratio of Liquid Product (Dry Basis)

- Liquid Product H/C Ratio
- 11 API Oil H/C Ratio
- Bio-Oil H/C Ratio
Conclusions

The mechanically fluidized reactor has been successfully modified to operate using with heavy oil and sawdust bio-oil.

Pyrolysis of bio-oil with or without heavy oil removes oxygenated compounds from the bio-oil and forms water.

Co-processing heavy oil with bio-oil reduces the yield of coke.

Co-processing heavy oil with bio-oil may increase the yield of recovered liquid hydrocarbons. Further investigations must be done to confirm this.
Continuous Plan

Operating Temperatures: 520, 540, 560°C

Nitrogen Flowrate: [0.75-5 SLM]

Total Liquid Feed: 10 mL/min

Heater Types
- Band
- Ceramic
- Induction Heater.

Mixing Ratios: 0%, 5%, 10%, 15%, 20% Bio-oil

Water Removal Using CaO

Co-processing with Lignin Injected Using Solvents
Rotating Air Cooling

Rotating Rods, driven by the motor

Air Cooling

Heavy Oil Injection

Bio-oil Injection

Gas/Vapors Exit

Rotating Blades

Sparger Distributor
Current Batch Problems

- Ceramic Heaters
- Reactor
- Pad Filter
- GC Analysis
- Air Cooling
- Motor
- Gas Flow Control Panel
- Cyclonic Condenser
- Electrostatic Precipitator
Batch Plan

Nitrogen Flowrate: [0.75-5 SLM]

Batch Mass: 200 g

Heater Types
- Band
- Ceramic
- Induction Heater

Mixing Ratios: 0%, 5%, 10%, 15%, 20% Bio-oil

Temperature Cuts:
- 25-110°C
- 110-200°C
- 200-300°C
- 300-350°C
- 350-400°C
- 400-450°C
- 450-500°C
- 500-550°C
- 550-600°C
Acknowledgements

From The University of Western Ontario
Dr Ran Xu
Dr. Lorenzo Ferrante
Dr. Cedric Briens
Dr. Franco Berruti

From Imperial Oil
Dr. Louis Hagey
Dr. Will Rogers