Recovery of REE from an apatite concentrate in the nitrophosphate process of fertilizer production

Mahmood Alemrajabi
KTH

Kerstin Forsberg
KTH

Ake Rasmuson
KTH

Follow this and additional works at: http://dc.engconfintl.org/phosphates_vii

Part of the [Materials Science and Engineering Commons](http://dc.engconfintl.org/phosphates_vii)

Recommended Citation

Mahmood Alemrajabi, Kerstin Forsberg, and Ake Rasmuson, "Recovery of REE from an apatite concentrate in the nitrophosphate process of fertilizer production" in "Beneficiation of Phosphates VII", P. Zhang, FIPR; J. Miller, Univ. of Utah; L. Leal, Univ. of Sao Paolo; A. Kossir, OCP Group; E. Wingate, Worley-Parsons Services Pty Ltd. Eds, ECI Symposium Series, (2015).

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Beneficiation of Phosphates VII by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
RECOVERY OF REE FROM AN APATITE CONCENTRATE IN THE NITROPHOSPHATE PROCESS OF FERTILIZER PRODUCTION

Mahmood Alemrajabi, Kerstin Forsberg, Åke Rasmuson
Outline

• Introduction
• Process description
• Digestion
• Cooling Crystallization
• Partial Neutralization
• Selective Precipitation
• Conclusion
Introduction

✓ Nitrophosphate process

✓ Integrated recovery of REE

✓ Governing parameters on concentration of REE in precipitates

✓ CaO: P2O5 ratio (0.25 - 1) and final pH

✓ More environmental friendly process and new source for REE
REE Recovery Unit

Digestion

Conversion of CNTH

Nitric acid

Cooling Crystallization

Partial Neutralization

NH3 gas

REE

NP- acid Solution

NP solution at higher pH

Neutralization

K salts

Evaporation & Particulation

NPK Fertilizer

Apatite
Apatite concentrate from LKAB

Apatite (Ca$_5$(PO$_4$)$_3$(F,Cl,OH)) is one of the REE rich minerals ending up in the tailings pond when Luossarvaaara-Kiirunavaara AB (LKAB) in Sweden processes Malmberget and Kirunas iron ore deposits.

<table>
<thead>
<tr>
<th>Element or Ratio</th>
<th>Unit</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>mass%</td>
<td>34.9</td>
</tr>
<tr>
<td>Fe</td>
<td>mass%</td>
<td>0.8</td>
</tr>
<tr>
<td>P$_2$O$_5$/CaO</td>
<td>mol/mol</td>
<td>3.2</td>
</tr>
<tr>
<td>Ce</td>
<td>ppm</td>
<td>1183</td>
</tr>
<tr>
<td>La</td>
<td>ppm</td>
<td>631.5</td>
</tr>
<tr>
<td>Nd</td>
<td>ppm</td>
<td>885.5</td>
</tr>
<tr>
<td>Y</td>
<td>ppm</td>
<td>841.4</td>
</tr>
<tr>
<td>Cd</td>
<td>ppm</td>
<td>0.1</td>
</tr>
<tr>
<td>Cr</td>
<td>ppm</td>
<td>5.4</td>
</tr>
<tr>
<td>Cu</td>
<td>ppm</td>
<td>19</td>
</tr>
<tr>
<td>Pb</td>
<td>ppm</td>
<td>9.8</td>
</tr>
<tr>
<td>As</td>
<td>ppm</td>
<td>318</td>
</tr>
</tbody>
</table>

Particle sizes: < 500 µm
Previous study (Forsberg K.M., 2014)

- Leaching parameters (Temperature, Particle size, Acid concentration and residence time)

Fig. 1 – Leaching in HNO$_3$ at 60°C
- Residues: 3 wt. % HREE, 97 wt. % LREE
- Concentrate: 29 wt. % HREE, 71 wt. % LREE

Fig. 2 – Leaching in 5 mol/L HNO$_3$
Ca$_5$(PO$_4$)$_3$F + 10 HNO$_3$ → 5 Ca(NO$_3$)$_2$ + 3 H$_3$PO$_4$ + HF

Elements recovery in 10 mol/L nitric acid (20% excess)

<table>
<thead>
<tr>
<th>Element</th>
<th>Ce</th>
<th>Y</th>
<th>Nd</th>
<th>La</th>
<th>Ca</th>
<th>P</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recovery %</td>
<td>99.9</td>
<td>99.9</td>
<td>98.5</td>
<td>98.2</td>
<td>98.6</td>
<td>99</td>
<td>98.3</td>
</tr>
</tbody>
</table>

Different tests

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Initial acid Con. (mol/L)</th>
<th>Liquid/Solid ml/g</th>
<th>Temp °C</th>
<th>CNTH Elimination %</th>
<th>Seeding</th>
<th>CNTH particle size µm</th>
<th>CaO:P2O5</th>
<th>Final pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>2.4</td>
<td>60</td>
<td>66</td>
<td>Yes</td>
<td>1200</td>
<td>1.15</td>
<td>2.18</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>2.4</td>
<td>60</td>
<td>48.7</td>
<td>Yes</td>
<td>800</td>
<td>1.54</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>4.5</td>
<td>6</td>
<td>60</td>
<td>0</td>
<td>No</td>
<td>-</td>
<td>3.2</td>
<td>1.8</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>2.4</td>
<td>60</td>
<td>0</td>
<td>No</td>
<td>-</td>
<td>3.24</td>
<td>1.2</td>
</tr>
<tr>
<td>5</td>
<td>4.5</td>
<td>6</td>
<td>60</td>
<td>0</td>
<td>No</td>
<td>-</td>
<td>3.24</td>
<td>2.1</td>
</tr>
</tbody>
</table>
Seeded cooling crystallization of Ca(NO₃)₂·4H₂O (CNTH)

CNTH concentration in NP acid solution during the cooling Crystallization

CNTH Crystallization and dissolution in HNO₃-H₃PO₄ medium
CaO : P2O5 ratio during the elimination of Ca

Less than 1 % by mass of total REE coprecipitated with CNTH crystals in both quick cooling and low cooling rare test
Partial Neutralization

Ammonium hydroxide 25% as precipitation agent

- By the pH 1.8 more than 95% of the REEs has recovered
- Different trend can be seen for HREE and LREE
 Solubility products study and Powder XRD analysis The REE are precipitated as Phosphates
✓ Early coprecipitation of REE with CaHPO4 in test 4
✓ The precipitates contain 0.04 mass% in test 4 at pH 1.2 and 2.07 mass% in test 1 at pH 2.18

✓ Ce elimination trend is almost the same in test 1 & 2
✓ Late precipitation of REE in test 3 and Forsberg results
✓ Precipitates contain 2.07 and 1.63 mass% REE in Test 1 and 2 in CaO:P2O5 ratio of 1.15 and 1.54
✓ In test 3 at pH 1.8 the precipitates contain 9.94 mass% REE
Effect of pH and Ca concentration on REE precipitates

In test 3 the precipitates in pH 1.8 contain 9.8 mass% of REE and 1 mass% in pH 2.1

REE mass % in precipitates versus CaO:P₂O₅ ratio in pre-neutralization solution in test 1

99.9 mass% of REE has been recovered in each point
Conclusions

✓ Less than 1% of REEs coprecipitated with CNTH crystals during cooling crystallization.

✓ CNTH Crystallization process reach the equilibrium after 2hr in NP-acid solution.

✓ The REE could be effectively separated from the leach solution by precipitation with ammonium hydroxide.

✓ The final pH where the partial neutralization is stopped and Ca elimination both play an important role in determining the content of REE in the precipitates.

✓ pH 1.8 is the optimum pH for stopping the partial neutralization.
Our research group

Crystallization

Supported liquid membrane extraction

Chromatography

REE$^{+3}$
Mahmood Alemrajabi
Mahale@kth.se