Columnar structured thermal barrier coatings by thermal spray methods

Robert Vassen
Forschungszentrum Jülich, Germany

Nadine Schlegel
Forschungszentrum Jülich, Germany

Stefan Rezanka
Forschungszentrum Jülich, Germany

Georg Mauer
Forschungszentrum Jülich, Germany

Emine Bakan
Forschungszentrum Jülich, Germany

See next page for additional authors

Follow this and additional works at: http://dc.engconfintl.org/thermal_barrier_iv

Part of the Materials Science and Engineering Commons

Recommended Citation

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Thermal Barrier Coatings IV by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Authors
Robert Vassen, Nadine Schlegel, Stefan Rezanka, Georg Mauer, Emine Bakan, and Daniel Mack

This conference proceeding is available at ECI Digital Archives: http://dc.engconfintl.org/thermal_barrier_iv/19
Several new thermal spray methods have been developed which allow the manufacture of columnar, highly strain tolerant thermal barrier coatings. One of the methods is the suspension plasma spraying, in which suspensions of fine, submicron meter powders are injected into the plasma plume. Under specific processing conditions columnar, finely structured coatings develop. Another method is the plasma spray - physical vapour deposition (PS-PVD) process in which powders are not only molten but even evaporated leading to a PVD-like columnar structure. The presentation will first describe the properties of these columnar coatings prepared from yttria stabilized zirconia (YSZ), the standard TBC material and compare these to conventional micro-cracked coatings. Furthermore, results obtained from advanced TBC materials processed by SPS and PS-PVD will be presented.