8-20-2017

How to produce a potential high value bio-char from the worst invasive plant in Canada

Chiara Barbiero
Institute for Chemicals and Fuels from Alternative Resources, Western University, Ontario, Canada

Franco Berruti
Institute for Chemicals and Fuels from Alternative Resources, Western University, Ontario, Canada

Cedric Briens
Institute for Chemicals and Fuels from Alternative Resources, Western University, Ontario, Canada

Follow this and additional works at: http://dc.engconfintl.org/biochar

Recommended Citation
Biochar production from the worst invasive plant in Canada

Chiara Barbiero
Stefano Tacchino
Franco Berruti
Cedric Briens
Preview

• Phragmites
• Pyrolysis
• Pre-treatments
• Results
• Conclusion
What are Phragmites?

Phragmites Australis (European common reed) are an alien, invasive plants.

- The stem can grow up to 5 meters tall.
- Extremely dense vegetation (200 plants per square meter)
- Seedhead contains upward 2000 seeds.
- The spread can happen through seed dispersal or via rhizomes
Why Phragmites represent a problem?

- Loss of biodiversity
- Loss of habitat
- Changes in hydrology
- Changes in nutrient cycling
- Increased fire hazards
- Economic and social impacts
Invasion

Pyrolysis

Batch system
Batch system

Main features:
- Batch with progressive collection of products at different temperatures
- Mechanical agitation
- Pure char bed
- No dilution
- Compact

Pyrolysis conditions:
- Temperature = up to 700 °C
- Heating rate = 1 to 15 °C/min
- Biomass = up to 300 g
Pyrolysis
Continuous system
Continuous system

Main features:
- Continuous system with collection of product at different temperatures
- Mechanical agitation
- High flexibility on pyrolysis conditions
 - Continuous removal of char
 - Pure char bed
 - Overflow
- Adjustable gas dilution (0 to high)
- Design for post treatment of biochar (activation)
- Chamber to study the effect of bio-char on pyrolysis vapours

Pyrolysis conditions:
- Temperature = up to 900 °C
Scale-up unit developed in ICFAR

Partial condenser & electrostatic demister:
- Dry bio-oil

Hot electrostatic precipitator:
- Fine char

Reactor:
- Mechanical mixer
- Induction heating
- Arch breaker

Cooled auger:
- Coarse char
2.5 tons/day Mechanically Fluidized Reactor (MFR)
Pretreatments

From the field...

...to the lab...

- Milling and sieving (1 mm)
- Acid wash: 1% wt HCl
- Alkali impregnation: 1% wt NaOH

Biomass washed with 1% HCl at 60°C for 1 h

Biomass impregnated with 1% NaOH at 60°C for 1 h

Drying at 105°C for 16 h
Pyrolysis conditions

Batch system

Pyrolysis conditions:
- Temperature = room T to 500°C
- Heating rate = 8 °C/min
- Biomass = 200 g

Slow pyrolysis

Continuous system

Pyrolysis conditions:
- Temperature = 500°C
- Biomass = 100 g

Fast pyrolysis
Biochar Characterizations

Ash recovery in char

<table>
<thead>
<tr>
<th>Recovery %</th>
<th>Untreated</th>
<th>NaOH</th>
<th>HCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample IDs (mg/kg)

<table>
<thead>
<tr>
<th>Sample IDs</th>
<th>Untreated</th>
<th>1% NaOH</th>
<th>1% HCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>339.4</td>
<td>3904.9</td>
<td>6134.4</td>
</tr>
<tr>
<td>Cd</td>
<td><0.125</td>
<td><0.125</td>
<td><0.125</td>
</tr>
<tr>
<td>Co</td>
<td><0.125</td>
<td><0.125</td>
<td><0.125</td>
</tr>
<tr>
<td>Cr</td>
<td>3.2</td>
<td>9.2</td>
<td>45.5</td>
</tr>
<tr>
<td>Cu</td>
<td>22.1</td>
<td>234.7</td>
<td>81.6</td>
</tr>
<tr>
<td>Fe</td>
<td>491.1</td>
<td>90.1</td>
<td>335.4</td>
</tr>
<tr>
<td>K</td>
<td>1417.6</td>
<td>33.5</td>
<td>57.1</td>
</tr>
<tr>
<td>Mg</td>
<td>116.1</td>
<td>3.9</td>
<td>0.5</td>
</tr>
<tr>
<td>Mn</td>
<td>9.6</td>
<td>6.4</td>
<td>0.8</td>
</tr>
<tr>
<td>Mo</td>
<td>2.2</td>
<td>6.6</td>
<td>0.7</td>
</tr>
<tr>
<td>Na</td>
<td>643.1</td>
<td>1142.6</td>
<td>294.2</td>
</tr>
<tr>
<td>Ni</td>
<td>36.5</td>
<td>94.4</td>
<td>56.8</td>
</tr>
<tr>
<td>P</td>
<td>1282.5</td>
<td>183.8</td>
<td>94.6</td>
</tr>
<tr>
<td>S</td>
<td>740.9</td>
<td>5313.3</td>
<td>13162.3</td>
</tr>
<tr>
<td>Si</td>
<td>437.9</td>
<td>308.4</td>
<td>530.2</td>
</tr>
</tbody>
</table>

Sample IDs

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Yield % (dry basis)</th>
<th>Ash content % (dry basis)</th>
<th>HHV (MJ/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>27%</td>
<td>22%</td>
<td>26.8</td>
</tr>
<tr>
<td>1% NaOH</td>
<td>30%</td>
<td>22%</td>
<td>26.3</td>
</tr>
<tr>
<td>1% HCl</td>
<td>28%</td>
<td>17%</td>
<td>28.3</td>
</tr>
</tbody>
</table>
What’s next?

Pre-treatments with different equipments
• Soxhlet extractor
• Sonic bath
• Water oven

And chemicals
• NaOH
• HCl
• Acetic acid
• water
Pyrolysis
What’s next?

Batch
Continuous
Acknowledgments
Thank you!
Questions?