Supercritical water gasification of aqueous biomass and waste for the production of CH4 and H2

Izad Behnia
ICFAR

Charles Xu
ICFAR

Paul Charpentier
Western University

Follow this and additional works at: http://dc.engconfintl.org/bioenergy_iv

Part of the Chemical Engineering Commons

Recommended Citation

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in BioEnergy IV: Innovations in Biomass Conversion for Heat, Power, Fuels and Chemicals by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Supercritical water gasification of glucose and aqueous biomass for the production of CH$_4$ and H$_2$

Izad Behnia

2$^{\text{nd}}$ year MESc

Western University, London, Ontario, Canada

Supervisor: Dr. Charles Xu
Joint Supervisor: Dr. Paul Charpentier
1. Introduction and background:

✓ Supercritical water (SCW):

Water above its critical point ($T=374^\circ C$, $P=22.1$ MPa) acquire special thermal and physical properties in comparison with normal water:

- Higher diffusivity
- Higher solubility for organics
- Less viscosity
- Less solubility for inorganics
- Less polarity, makes it a good solvent for non-polar compounds.

✓ **NO drying** is needed for SCWG of biomass even for water content > 90% in contrast with other hydrothermal processes.

✓ The gas product mostly contains: CH_4, H_2, CO_2, CO.
2. Motivations:

- Based on **thermodynamic** equilibrium:

 Low SCWG temperatures - \(\text{CH}_4 \)

 Higher temperatures - \(\text{H}_2 \)

- SCW act both as a media and a reactant.

 shorter residence times

 smaller reactor volume

- SCWG can be applied for:

 gas reforming of organic biomasses

 treatment of hazardous waste for the waste water treatment industry

- At relative low SCWG temperature zone (600 °C \(>T>374 \) °C) suitable catalyst is essential:

 Decline char and tar formation
Gas products:

Methane rich gas: This synthetic natural gas (SNG) can be injected into gas grids to be used for households. This high-pressure methane can also be transferred for CNG purposes to be burned as a fuel in car’ engines.

Hydrogen rich gas: Syngas can be used for fuel cell.

Main possible reaction pathways are suggested by many research groups

Steam-reforming:

\[C_6H_{12}O_6(l) + H_2O(g) \rightarrow 6CO + 6H_2 + H_2O(g) \]

\[\Delta H_{298}^0 = 607.82 \text{ kJ/mol} \]

Methanation:

\[CO(g) + 3H_2(g) \rightarrow CH_4 + H_2O(g) \]

\[\Delta H_{298}^0 = -206.19 \text{ kJ/mol} \]

Water-gas shift

\[CO(g) + H_2O(g) \rightarrow CO_2 + H_2 \]

\[\Delta H_{298}^0 = -41.16 \text{ kJ/mol} \]
3. Methodology:

5 wt% Glucose-water solution
Or
Aqueous fraction of pyrolysis oil

Catalyst
(prepared by impregnation method)

T=400-600 °C
P=4000 psi=27.5 MPa

SCWG

Effluent
Analysis:
- TOC
- ICP

Gas Products
Analysis:
- Micro-GC
Main Gases:
- H₂, CH₄, CO₂, CO

Used Catalyst
Analysis:
- TPR
- Pulse chemisorption
- TGA
- XRD
- SEM-EDX
- TPD
4. Materials and methods:

SCWG of model compound:

- Feedstock: **5 wt% glucose-water** solution
- Operational condition:
 - **T=500 °C** (400, 500, and 600 °C) **P=4000 psi= 27.5 Mpa**
 - Feeding rate= 1 ml/min WHSV= 3 h⁻¹
- Fixed-bed catalyst with considering pre-heating effect
- Catalyst prepared by **impregnation method**, and was reduced in-situ at 600 °C.

SCWG of aqueous fraction of pyrolysis oil:

- Operational condition: **T=500-700 °C** **P=4000 psi= 27.5 Mpa**
 - Feeding rate= 1 ml/min WHSV= 3 h⁻¹ in presence of the screened catalyst in the model test
- Different feed concentration: 0.7 wt% - 2.9 wt% carbon
4.1. Bench-scale Flow type reactor:

- Continuous flow reactor
- Tube: *Inconel 625* with 9.55mm OD X 6.34mm ID X 472mm Length
- In-situ catalyst reduction
- Maximum operation condition: T= 800 ºC, P=6000 psi, 41.3 Mpa
- Fixed-bed catalyst inside
- HPLC pump
4.2. Schematic diagram of the reactor:
5. Key Results:

5.1. Catalyst Characterization:

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Metal content (wt%)</th>
<th>Support</th>
<th>BET surface area (m²/g)</th>
<th>Total pore volume (cm³/g)</th>
<th>Average pore diameter (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni₃₀Ru₂/γ-Al₂O₃</td>
<td>30%Ni+2%Ru</td>
<td>γ-Al₂O₃</td>
<td>106.32</td>
<td>0.27</td>
<td>9.88</td>
</tr>
<tr>
<td>Ni₂₀Ru₂/γ-Al₂O₃</td>
<td>20%Ni+2%Ru</td>
<td>γ-Al₂O₃</td>
<td>126.47</td>
<td>0.29</td>
<td>9.23</td>
</tr>
<tr>
<td>Ni₁₀Ru₂/γ-Al₂O₃</td>
<td>10%Ni+2%Ru</td>
<td>γ-Al₂O₃</td>
<td>139.45</td>
<td>0.36</td>
<td>10.4</td>
</tr>
<tr>
<td>Ni₂₀/γ-Al₂O₃</td>
<td>20%Ni</td>
<td>γ-Al₂O₃</td>
<td>113.18</td>
<td>0.31</td>
<td>10.82</td>
</tr>
<tr>
<td>Ru₂/γ-Al₂O₃</td>
<td>2%Ru</td>
<td>γ-Al₂O₃</td>
<td>146.02</td>
<td>0.44</td>
<td>11.54</td>
</tr>
<tr>
<td>Ni₂₀Ru₂/TiO₂</td>
<td>20%Ni+2%Ru</td>
<td>TiO₂</td>
<td>27.88</td>
<td>0.14</td>
<td>20.6</td>
</tr>
</tbody>
</table>
5.2. Catalyst Screening (SCWG 5wt% glucose-water solution)

T=500°C, P=27.7MPa, WHSV=3h⁻¹
5.3. Catalyst Stability test (Ni$_{20\%}$Ru$_{2\%}$/γ-Al$_2$O$_3$):

Gas composition distribution

Volume fraction %

- **H$_2$**
- **CH$_4$**
- **CO$_2$**

Time (hr)

T=500°C, P=27.7MPa, WHSV=3h$^{-1}$
5.4. Pre-heating effect on SCWG of 5% glucose–water solution:

![Diagram showing gas composition and production yield with and without pre-heating.](image)

Gas Composition

- L1: without pre-heating
- L2: with pre-heating

Gas Production Yield

- Product (mol) / C in feedstock (mol)

H₂, CO₂, CH₄ concentrations are shown for both L1 and L2.
5.5. Nickel loading effect on SCWG of model compound:

![Graph showing gas products' yields for different nickel loading conditions.](image)

- **Gas products’ yields**

- **Yields** for:
 - H₂
 - CH₄
 - CO₂
 - Total carbon in gas

- **Conditions**:
 - Ni₁₀Ru₂/γ-Al₂O₃
 - Ni₂₀Ru₂/γ-Al₂O₃
 - Ni₃₀Ru₂/γ-Al₂O₃
5.6. SEM image of Ni$_{20\%}$Ru$_{2\%}$/γ-Al$_2$O$_3$ (the best catalyst):

Fresh Ni$_{20\%}$Ru$_{2\%}$/γ-Al$_2$O$_3
Prepared by impregnation method
Calcined at 600 °C
Heating rate 10 °C/min

Used Ni$_{20\%}$Ru$_{2\%}$/γ-Al$_2$O$_3
Operated at T=500 °C for 20hr, P=27.7 MPa, WHSV=3 h$^{-1}$
Feed: glucose solution 5wt%
5.7. Temperature effect on SCWG of 5 wt% glucose-water solution in presence of Ni$_{20\%}$Ru$_{2\%}$/γ-Al$_2$O$_3$ catalyst:

![Graph showing yield (mol/mol of Carbon in the feed) for H2, CH4, CO2, and Total conversion at different temperatures (T=400°C, T=500°C, T=600°C).]

Ni$_{20\%}$Ru$_{2\%}$/γ-Al$_2$O$_3$, T=500 °C, P=27.7 MPa, WHSV=3 h$^{-1}$
5.8. SCWG of aqueous fraction of pyrolysis oil (2.9 wt% carbon) in presence of Ni_{20\%}Ru_{2\%}/\gamma-Al_2O_3 catalyst:

Ni_{20\%}Ru_{2\%}/\gamma-Al_2O_3, P=27.7 MPa, WHSV=3 h^{-1}
6. Conclusion:

- The novel nickel catalyst prepared by the authors, Ni$_{20}$Ru$_2$/γ-Al$_2$O$_3$, is the most active catalyst for methane production via SCWG of glucose and aqueous fraction of pyrolysis oil.

- 98% carbon conversion to gas was achieved in glucose SCWG test at 500 °C.

- 90% carbon conversion to gas was obtained in Aq-PO SCWG test at 700 °C.

- 20% nickel loading produced the highest methane yield, but 10% nickel loading resulted in the highest hydrogen production.

- At 500 °C we already achieved almost 100% carbon conversion to gas. A higher temperature resulted in lower methane but higher hydrogen production.

- Ruthenium is an effective catalyst promoter which may promote nickel dispersion, prevent sintering of catalyst and increase nickel reducibility.
7. Acknowledgment and sponsors:
Thank You!

Question?