Fractionation of Flash Pyrolysis Condensates by Staged Condensation

Tim Schulzke
Fraunhofer UMSICHT

Stefan Conrad
Fraunhofer UMSICHT

Jan Westermeyer
Fraunhofer UMSICHT

Follow this and additional works at: http://dc.engconfintl.org/biorefinery_I

Part of the Chemical Engineering Commons

Recommended Citation

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Biorefinery I: Chemicals and Materials From Thermo-Chemical Biomass Conversion and Related Processes by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Copyright notice

All rights reserved. The contents of this presentation (a. o. texts, graphics, photos, logos etc.) and the presentation itself are protected by copyright. They have been prepared by Fraunhofer UMSICHT. Any distribution or presentation of the content is prohibited without prior written consent by Fraunhofer UMSICHT.

Without the written authorisation by Fraunhofer UMSICHT this document and/or parts thereof must not be distributed, modified, published, translated or reproduced, neither in form of photocopies, microfilming nor other – especially electronic – processes. This proviso also covers the inclusion into or the evaluation by databases. Contraventions will entail legal prosecution.

©Copyright Fraunhofer UMSICHT, 2015

In case of any questions, please contact:
Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT
Iris Kumpmann
Osterfelder Strasse 3
46047 Oberhausen
GERMANY
Tel.: +49 208-8598-1200
E-Mail: iris.kumpmann@umsicht.fraunhofer.de
Fractionation of Flash Pyrolysis Condensates by Staged Condensation

Tim Schulzke; Group Manager Thermochemical Processes and Hydrocarbons
Stefan Conrad, Jan Westermeyer; Thermochemical Processes and Hydrocarbons

Chania, Crete, 01.10.2015
AGENDA

1. Ablative Flash Pyrolysis

2. Staged pyrolysis vapour condensation
 - Two staged condensation
 - Three staged condensation
 - Creation of Value

3. Summary
AGENDA

1. Ablative Flash Pyrolysis

2. Staged pyrolysis vapour condensation
 - Two staged condensation
 - Three staged condensation
 - Creation of Value

3. Summary
Ablative Flash Pyrolysis – Principle

F

vapor

T ~550°C
t < 1s
O₂ = 0

char
(15-40%)
gas
(10-20%)

T pyrolysis condensate
(40-70%)

secondary reactions

condensation

CO₂

CH₄

C₂H₆

H₂O

CO
Ablative Flash Pyrolysis – Products

- Wheat/barley straw
- Pyrolysis char
- Condensate (aqueous)
- Condensate (organic)
Ablative Flash Pyrolysis – Laboratory Plant

Input:
< 10 kg/h

Heating:
electrical

Cooling:
indirect

Aerosol sep.:
ESP
Ablative Flash Pyrolysis – Quality of Condensates

<table>
<thead>
<tr>
<th></th>
<th>aqueous</th>
<th>organic</th>
</tr>
</thead>
<tbody>
<tr>
<td>mass ratio</td>
<td>67.5 %</td>
<td>32.5 %</td>
</tr>
<tr>
<td>total Water</td>
<td>61.7 %</td>
<td>25.3 %</td>
</tr>
<tr>
<td>nonaromatic Acids</td>
<td>7.4 %</td>
<td>5.9 %</td>
</tr>
<tr>
<td>nonaromatic Alcohols</td>
<td>1.5 %</td>
<td>0.3 %</td>
</tr>
<tr>
<td>nonaromatic Aldehydes</td>
<td>0.0 %</td>
<td>1.1 %</td>
</tr>
<tr>
<td>nonaromatic Ketones</td>
<td>5.9 %</td>
<td>7.1 %</td>
</tr>
<tr>
<td>Phenols</td>
<td>1.2 %</td>
<td>12.0 %</td>
</tr>
<tr>
<td>Sugars</td>
<td>1.6 %</td>
<td>1.5 %</td>
</tr>
<tr>
<td>Heterocyclic Sub.</td>
<td>1.4 %</td>
<td>2.9 %</td>
</tr>
<tr>
<td>not GC-detectable Sub.</td>
<td>19.1 %</td>
<td>42.4 %</td>
</tr>
<tr>
<td>lower Heating value</td>
<td>7.9 MJ/kg</td>
<td>22.3 MJ/kg</td>
</tr>
</tbody>
</table>

wheat / barley straw, 549 °C
AGENDA

1. Ablative Flash Pyrolysis

2. Staged pyrolysis vapour condensation
 - Two staged condensation
 - Three staged condensation
 - Creation of Value

3. Summary
Staged condensation – Approach
Staged Condensation – Two stages experiment
Staged Condensation – Two stages experiment

- Condensation 1: 300 °C, 45% (Water: 10%, Nonaromatic Acids: 7%, Nonaromatic Aldehydes: 3%, Nonaromatic Ketones: 8%, Phenols: 12%, Sugars: 4%, not detected substances: 52%), Heating Value (LHV): 23 MJ/kg
- Condensation 2: 89 °C, 55% (Water: 75%, Nonaromatic Acids: 8%, nonaromatic Aldehydes: 0%, nonaromatic Ketones: 6%, Phenols: 0%, Sugars: 0%, not detected substances: 8%), Heating Value (LHV): 5 MJ/kg

Total condensate (two-phase) weighted average values: 12 °C, 8% (Water: 46%)

- Condensate of wheat/barley straw: 539 °C, 50 bar pressure

Note: 2 based on the fraction, 1 based on the raw material.
Staged Condensation – Three stages experiment
Staged Condensation – Three stages experiment

![Graph showing temperatures and condensation stages](image)

Condensation Stages

<table>
<thead>
<tr>
<th>Stage</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>115</td>
</tr>
<tr>
<td>3</td>
<td>87</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
</tr>
</tbody>
</table>

Condensate Composition

<table>
<thead>
<tr>
<th>Component</th>
<th>Condensation 1</th>
<th>Condensation 2</th>
<th>Condensation 3</th>
<th>Total Condensate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>2%</td>
<td>8%</td>
<td>70%</td>
<td>46%</td>
</tr>
<tr>
<td>Acids</td>
<td>1%</td>
<td>6%</td>
<td>9%</td>
<td>7%</td>
</tr>
<tr>
<td>Nonaromatic Aldehydes</td>
<td>0%</td>
<td>3%</td>
<td>0%</td>
<td>1%</td>
</tr>
<tr>
<td>Nonaromatic Ketones</td>
<td>1%</td>
<td>12%</td>
<td>7%</td>
<td>7%</td>
</tr>
<tr>
<td>Phenols</td>
<td>11%</td>
<td>20%</td>
<td>1%</td>
<td>5%</td>
</tr>
<tr>
<td>Sugars</td>
<td>6%</td>
<td>5%</td>
<td>0%</td>
<td>2%</td>
</tr>
<tr>
<td>Not Detected Substances</td>
<td>79%</td>
<td>38%</td>
<td>10%</td>
<td>30%</td>
</tr>
</tbody>
</table>

Heating Value (LHV)

- Condensate of wheat/barley straw at 550°C, 50 bar pressure
 - 28 MJ/kg
 - 22 MJ/kg
 - 6 MJ/kg

2 based on the fraction
1 based on the raw material
© Fraunhofer UMSICHT
Staged Condensation – Creation of Value

- Higher boiling fraction (2 staged condensation)
 black viscous liquid, high heating value
 - Sugars, Phenolics ➔ raw material for rigid PU foams
 - Fraction as a whole ➔ Gasification (Synthesis gas)
 ➔ energetic utilization (heat, bunker fuel)

substitution rate of polyalcohol: 0 %, 50 %, 80 %
Staged Condensation – Creation of Value

- **Highly viscous fraction (3 staged condensation)**
 - black pasty liquid, high heating value
 - Sugar (Levoglucosan) ➔ raw material for chem. Industry
 - Fraction as a whole ➔ Gasification (Synthesis gas)
 - ➔ energetic utilization (heat)

- **Medium viscous fraction (3 staged condensation)**
 - dark brown, honey-like liquid, medium heating value
 - Phenols (Syringols) ➔ raw material for Phenoplastic
 - Aldehydes (Acetaldehyde) ➔ raw material for Phenoplastic
 - Fraction as a whole ➔ Refinery (transportation fuels)
 - ➔ energetic utilization (power, heat)
Staged Condensation – Creation of Value

- **Medium viscous fraction (3 staged condensation)**
 dark brown, honey-like liquid, medium heating value

<table>
<thead>
<tr>
<th>specimen</th>
<th>max. load [N]</th>
<th>area [mm²]</th>
<th>tensile strength [N/mm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1551</td>
<td>221</td>
<td>7.02</td>
</tr>
<tr>
<td>2</td>
<td>1274</td>
<td>255</td>
<td>5.00</td>
</tr>
<tr>
<td>3</td>
<td>1015</td>
<td>221</td>
<td>4.59</td>
</tr>
<tr>
<td>4</td>
<td>1338</td>
<td>187</td>
<td>7.16</td>
</tr>
<tr>
<td>5</td>
<td>1350</td>
<td>170</td>
<td>7.94</td>
</tr>
</tbody>
</table>
Staged Condensation – Creation of Value

- Aqueous fraction (2 and 3 staged condensation)
 reddish brown aqueous liquid, low heating value
 - Water
 - org. acids (acetic acid) → pure acid (raw material for chem. Industry)
 - Alcohols, Ketones (Acetol) → Solvents
 - Fraction as a whole → Fermentation (biogas)
Staged Condensation – Creation of Value

- Aqueous fraction (2 and 3 staged condensation)
 reddish brown aqueous liquid, low heating value
AGENDA

1. Ablative Flash Pyrolysis

2. Staged pyrolysis vapour condensation
 - Two staged condensation
 - Three staged condensation
 - Creation of Value

1. Summary
Summary

Flash pyrolysis ...
- makes biomass available in liquid form
- makes material use possible
 - the pyrolysis temperature has influence on the formation of individual substances

Staged condensation of pyrolysis vapors ...
- represents an uprating-method
 - Preliminary separation of material groups
 - Enrichment of material groups with similar characteristics
 - enables an efficient processing of the fractions

Target
- Comprehensive (economic) value creation from the individual fractions
Thank you for your kind attention!

Funding notice
The Fraunhofer Innovation Cluster Bioenergy is sponsored by Industry, the Ministry for Innovation, Science and Research of the German state of North Rhine-Westphalia (MIWF) with funds from the European Fund for Regional Development (EFRE) and by Fraunhofer-Gesellschaft.

Contact:
Fraunhofer UMSICHT
Osterfelder Strasse 3
46047 Oberhausen, Germany
E-Mail: info@umsicht.fraunhofer.de
Internet: http://www.umsicht.fraunhofer.de/en

Dipl.-Ing. Tim Schulzke
Telefon: +49 208 8598-1458
E-Mail: tim.schulzke@umsicht.fraunhofer.de