Engineering Conferences International ECI Digital Archives

Electric Field Assisted Sintering and Related Phenomena Far From Equilibrium

Proceedings

Winter 3-8-2016

Electric field–assisted flash sintering of fine–grained and high–permittivity CaCu3Ti4O12 electroceramics

Lilian Menezes University of São Paulo, lilianmfisica@gmail.com

Follow this and additional works at: http://dc.engconfintl.org/efa_sintering Part of the <u>Engineering Commons</u>

Recommended Citation

[1] Subramanian, M. A. et al., High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem. 151, 323-325 (2000).
[2] Cologna, M., Rashkova, B., RAJ, R., Flash sintering of nanograin zirconia in < 5 s at 850 °C. J. Am. Ceram. Soc. 93, 3556-3559 (2010).
[3] Jesus, L. M. et al., Polymeric synthesis and conventional versus laser sintering of CaCu3Ti4O12 electroceramics: (micro)structures, phase development and dielectric properties. J. Alloys Compd., In press, DOI: 10.1016/ j.jallcom.2015.09.027 (2015).

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Electric Field Assisted Sintering and Related Phenomena Far From Equilibrium by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

São Carlos Institute of physics – IFSC University of São Paulo – USP

Electric field-assisted flash sintering of fine-grained and high-permittivity CaCu₃Ti₄O₁₂ (CCTO) electroceramics

Lílian Menezes de Jesus

Prof. Dr. Jean-Claude M'Peko (University of São Paulo) Prof. Dr. Rishi Raj (University of Colorado Boulder)

Presentation Outline

Introduction

Experimental Procedure

- Synthesis using a polymeric precursor method;
- Field-assisted flash sintering;
- Characterization techniques.

✓ Results

- Effects of electric field (E) on CCTO Sintering;
- (Micro)structural Characteristics;
- Correlation between AGS and dielectric constant.

Summary

Introduction

Introduction

Why should we study CCTO?

\checkmark CaCu₃Ti₄O₁₂ (CCTO)

- $_{\odot}~\epsilon^{\prime} \sim 10^4$ (at RT and 100 kHz) [1]
- $_{\odot}\,$ Non-Ferroelectric (ϵ ' is stable in a wide range of T)
- \circ Remarkable nonlinear current-voltage response ($\alpha = 912$ [2])

Potential use in electronic devices

- Processing conditions strongly affects CCTO properties;
- Field-assisted flash sintering has been applied for the preparation of several materials [3-5];
 - However, there are no reports for CCTO ceramics;

How does electric field affect the CCTO sintering?

M.A. Subramanian, et al., J. Solid State Chem. 151 (2000) 323-325.
 S.-Y. Chung, et al., Nature Mater. 31 (2004) 774-778.
 M. Cologna, et al., J. Am. Ceram. Soc. 93 (2010) 3556-3559.
 X. Hao, et al., J. Power Sources 210 (2012) 86-91.
 S.K. Jha, R. Raj, J. Am. Ceram. Soc. 97 (2014) 527-534.

Experimental Procedure

Experimental Procedure

Powder synthesis: Polymeric precursor method

Fig. 1: Flowchart of the CaCu₃Ti₄O₁₂ synthesis process.

[6] Jesus, L. M. *et al.*, Polymeric synthesis and conventional versus laser sintering of CaCu₃Ti₄O₁₂ electroceramics: (micro)structures, phase development and dielectric properties. *J. Alloys Compd.* **654**, 482-490 (2016).

Electric field-assisted flash sintering

Fig. 2: Flash Sintering Experimental apparatus.

Experimental Procedure USP

Characterization techniques

- Temperature measurement by optical pyrometry;
 using a CLTM-1 Micro-Epsilon optical pyrometer.
- Density determination by Archimedes method;
 using distilled water as the immersion fluid.

X-ray diffraction (XRD); o using a Rigaku RINT 2000/PC equipment operating with CuKα radiation.

Scanning electron microscopy (SEM); using a FEG-SEM, FEI Inspect F50 microscope.

Measurement of ε' at room temperature and 1 MHz. o using an impedance analyzer HP 4192A.

True Strain and Power Dissipation (Flash Sintering)

Fig. 3: Temperature dependence of true strain (ϵ) and power density during electric field-assisted sintering. $J_{max} = 75 \text{ mA/mm}^2$ and dwell time of 60 s.

Sample temperature during flash sintering

Fig. 4: Dependence of strain on furnace temperature and time evolution of furnace and pyrometer temperatures during sintering for E = 30 V/cm.

[7] R. Raj, Joule heating during flash-sintering, J. Eur. Ceram. Soc. 32 (2012) 2293-2301.

Type A and Type B contribution to strain

- Y_2O_3 -doped Z_rO_2 [3]
- Gd-doped CeO₂ [4]
- TiO₂ [5]
- They have a pure FAST region

Fig. 5: Shrinkage strain attributed to conventional-like behavior (I), FAST- (II) and FLASH-dominated regions (III).

[4] M. Cologna, B. Rashkova, R. Raj, J. Am. Ceram. Soc. 93 (2010) 3556-3559.
 [5] X. Hao, Y. Liu, Z. Wang, J. Qiao, K. Sun, J. Power Sources 210 (2012) 86-91.
 [6] S.K. Jha, R. Raj, J. Am. Ceram. Soc. 97 (2014) 527-534.

Structural characterization of the ceramics - XRD

Fig. 9: XRD of CCTO ceramic sample conventionally sintered at 1050 °C for 60 s (0 V/cm) and flash-sintered samples under different electric fields.

Microstructural characterization - SEM

Fig. 6: SEM micrographs of the specimens after conventional (a) and electric field-assisted sintering (b-d).

Table 1: Applied field (*E*), relative density (ρ_{rel}), furnace (T_{furn}^{flash}) and pyrometer (T_{pyro}^{flash}) temperatures at flash and average grain size (AGS).

<i>E</i> (V/cm)	$ ho_{rel}$ (%)	T ^{flash} (°C)	T ^{flash} (°C)	AGS (µm)
0	94	n/a†	1050	0.64
10	93	n/a†	1103	1.32
15	94	995	1120	1.55
20	95	975	1113	0.98
30	94	918	1090	0.85
40	93	860	1053	0.77
50	91	800	1036	0.70
60	90	750	1044	0.73

[†]These specimens were sintered at a furnace temperature of 1050 °C.

Correlation between grain size and dielectric constant

Results

Fig. 7: (a) Variation of the average grain size and (b) dielectric constant at room temperature and 1 MHZ in the CCTO ceramics upon applied electric field.

[4] X. Hao, Y. Liu, Z. Wang, J. Qiao, K. Sun, J. Power Sources 210 (2012) 86-91.
[8] J.-C. M'Peko, J.S.C. Francis, R. Raj, J. Eur. Ceram. Soc. 34 (2014) 3655-3660.

Summary

Summary

- ✓ Sintering is accelerated (FAST effect) for $E \gtrsim 15$ V/cm, ending with a FLASH event;
- Both events implied sintering at furnace temperatures considerably lower than in conventional processing;
- ✓ for *E* < 15 V/cm, there was no improved sintering rate, and AGS increased with field (Joule heating);
- ✓ for $E \gtrsim 15$ V/cm, the AGS decreased with *E*;
- $\checkmark \epsilon'$ values reproduced thoroughly the behavior of AGS with varying *E*, suggesting ϵ' to be modulated by the dielectric response from grain boundaries;
- Flash sintering is shown to be a good approach for producing high-quality CCTO electroceramics.

Thank you!

University of Colorado Boulder