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ABSTRACT 
 

In this article some numerical modeling procedures of 
compact heat exchangers are discussed. A simple system 
analysis, originated from the early finite element methods, 
is discussed first. The full scale CFD modeling approach 
follows the system analysis. Prominence is given to 
various currently available turbulent flow modeling 
techniques for fluid flow and heat transfer in compact heat 
exchangers. Recent developments in turbulence modeling 
approaches and their potential applications in compact 
heat exchanger analysis are also discussed. Some example 
problems are also presented to discuss these modeling 
procedures.  
 
INTRODUCTION 
 

An effective design for a heat exchanger is the one 
which maximizes the heat transfer while reducing the 
power expended. Increase in surface area, which is the 
primary feature of many compact heat exchangers, 
invariably increases the heat transfer. However, this also 
increases the power expended and cost. There are several 
books and papers published on the basic design 
procedures of heat exchangers (Kays and London, 1964) 
based on experimental and theoretical studies of the past. 
However, some challenges of heat exchanger design will 
remain with us for fore-seeable future. This is due to the 
fact that the heat exchanger designs need to adopt itself to 
the ever growing process, power and aerospace industries. 
As these industries grow, more precise design of heat 
exchangers and suitable materials become crucial. The 
reduction in space occupied, better performance and cost 

effective designs would be future objectives of the heat 
exchanger industry. 

In recent times, the traditional design procedures using 
the experimental data and analytical based approaches 
have been complemented by the numerical based 
approaches. The reasons for the change in the trend are 
due to two reasons. The first reason is the ever growing 
computing power and the second is the availability of 
better software tools. For instance the unstructured mesh 
generation of complex flow domains and solution to 
turbulent flow in these domains are becoming 
increasingly common in the literature. Thus, in this article 
computational analysis of heat exchanger surfaces, which 
eventually can lead to an optimal design, is discussed. 

The major objective of any numerical modeling 
approach in heat exchangers is to relate the heat 
transferred to the total power expended. This may be 
achieved via several paths. However, the common goal of 
any analysis will be to reach an optimal design. 

The design process starts with an initial problem 
design. Here human instinct (common sense) and previous 
experience helps to come up with a basic idea and the 
numerical calculations help in the refinement of the initial 
design to create an optimal one. Once an initial design is 
available the next stage is the simplification and this step 
depends a great deal on the tools available. If available 
numerical tools are comprehensive then the simplification 
to the initial design will me minimal. However, with any 
numerical tool one has to make sure that the problem is 
not over simplified to an extent to lose the accuracy of 
physics. The third step is the input data generation suitable 
for the numerical tool employed. Here the geometrical 
modeling, mesh arrangement (or generation) and 
necessary boundary and initial conditions will be part of 
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the input data generation. The fourth step is the numerical 
solution. If the objective is only to increase the heat 
transfer rate then one would be interested in a detailed 
temperature distribution. However, a comprehensive 
analysis should produce the relation between heat transfer 
and power expended bearing in mind the complex shapes 
involved in the design and cost. The fifth step involves the 
analysis of the results and determining whether or not the 
design is satisfactory. If not the problem is redefined 
based on the results obtained in the forth step. The 
redefining can be automated via optimization techniques 
by prescribing the objective functions for simple 
geometries. However, even for a simple geometry the 
number of parameters can be many. 

In this article we concentrate on the numerical 
modeling of flow and heat transfer in compact heat 
exchanger channels. The following section briefly 
describes a system analysis. In the latter sections, 
computational fluid dynamics approach is discussed in 
detail. Some example problems are also presented as and 
when required.  

 
SYSTEM ANALYSIS 

 
The performance of a heat exchanger can be 

calculated in terms of its effectiveness for a given 
condition. In order to determine the effectiveness of a heat 
exchanger, we have to calculate the outlet temperatures of 
both the hot fluid and the cooling fluid for the given inlet 
temperatures. The overall heat transfer coefficient may be 
a constant or could vary along the heat exchanger. 

 
Figure 1 Schematic diagram of a shell and tube heat 

exchanger 
 
For the purpose of illustration let us consider a shell 

and tube heat exchanger as shown in Figure 1 (Holman, 
1989; Incropera and Dewitt, 1990). In this type of heat 
exchanger, the hot fluid flows through the tube and the 
tube is passed through the shell. The cooling fluid is 

pumped into the shell and thus the hot fluid in the tube is 
cooled. 

Let us divide the given heat exchanger into eight cells 
as shown in Figure 2 (Lewis et al., 2005; Ravikumar et al., 
1984). It is assumed that both the hot and cold fluids will 
travel through the cell at least once. Let the overall heat 
transfer coefficient be U and the surface area of the tubes 
be A. These are assumed to be constant throughout the 
heat exchanger within each element (cell). Let us assume 
that the hot and cold fluid temperatures vary linearly 
along the flow. 

Now, the heat leaving node 1 and entering element 1 
(Figure 1(b)) is  

111 TWQ =                               (1) 
where W1 is  ρcp times volume flow rate. The heat leaving 
element 1 and entering node 2 is (The energy balance is 
considered with respect to the element. Heat entering is 
taken as being positive and leaving the element is taken as 
negative) 

)( 12,112,1112 TTUATWQ −−=                          (2) 
where T1,2 = 0.5 (T1 + T2) and T11,12 = 0.5 (T11 + T12) 
Similarly, the heat leaving node 11 and entering 

element 1 is 
11211 TWQ =                                    (3) 

and the heat leaving element 1 and entering node 12 is 
)( 2,112,1111212 TTUATWQ −−=                            (4) 

In this example the heat transfer between the fluids is 
given by UA (T11,12 - T1,2) whereas some other models use 
UA(T12 – T11,12). The assumption in the present model is 
more logical in view of the continuous variation (linear in 
our case) of the temperature difference between the hot 
and cold fluids. 
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Figure 2 System analysis of shell and tube heat 

exchanger 
Equations (1) – (4) can be combined and recast in 

matrix form to give the element characteristics, i.e., 
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where C = UA/2. 
Assembly of the element characteristics for elements 1 to 
8 will results in the global stiffness matrix in which Q1, 
and Q10 are known (in other words T1, and T10 are known). 

The solution of the remaining equations will give the 
temperature distribution for both the fluids i.e., T2, T3, T4, 
T5, T6, T7, T8 and T9 for the incoming hot fluid and T11, 
T12, T13, T14, T15, T16, T17 and T18 for the coolant. 

With the known exit temperatures T9 and T18, the 
effectiveness of the heat exchanger can be calculated. 

Though simple, the system analysis may not give very 
accurate results due to the simplifying assumptions used. 
Also, generalizing this method to complex situations is 
difficult. In what follows, we discuss the more general 
analysis of computational fluid dynamics methods.  
 
COMPUTATIONAL FLUID DYNAMICS STUDY 
 

The computational fluid dynamics study has been the 
subject of recent interest to many heat exchanger analysts 
due to the vast computational resources available 
nowadays and development in numerical solution 
techniques and mesh generation in the last thirty years 
(Amon, 1995; Amon and Mikic, 1991; Atkinson, 1998; 
Fabbri, 2000; Ciofalo, 1996; Groll and Mertz, 1997; 
Islamoglu and Parmaksizoglu, 2004; Sunden, 1999; Tafti 
et al., 1999; Wang et al., 1996). There are several 
commercial softwares available in addition to a number of 
research codes. 

It is often necessary for a researcher to develop his 
own software or routines to model special cases of heat 
exchangers. The fluid dynamics and heat transport in a 
heat exchanger is governed by the incompressible Navier-
Stokes equations. The Navier-Stokes equations consist of 
conservation of mass, momentum and energy. In the 
incompressible flow context the energy equation becomes 
a transport equation for temperature. The Navier-Stokes 
equations may be summarised in a compact form as 
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In the above equations suffixes i and j indicate the 
directions. ui are the velocity components in xi (or xj) 
directions, t is the time, ρ is the density,  ν is the kinematic 
viscosity, T is the temperature and α is the thermal 
diffusivity. 

The above equations are valid for any incompressible 
flow problems including flows with turbulence. However, 
molecular level turbulence needs extremely large 
computing power and extremely expensive at operating 
Reynolds numbers of compact heat exchangers. Thus, to 
tackle the turbulence phenomena generally Large Eddy 
Simulation (LES) or Reynolds Averaged Navier-Stokes  
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Figure 3 Laminar flow and heat transfer in a 
corrugated channel. Unstructured mesh 

 

a

b

c

Re = 100 Re = 500

 
Figure 4 Laminar flow and heat transfer in a corrugated 

heat exchanger channel (a) Stream traces (b) Pressure and 
(c) Temperature 

 
(RANS) equations are commonly employed. It is also 
common nowadays to see researchers using a combination 
of LES and RANS approaches to model turbulence. Both 
these modeling techniques are briefly discussed in the 
following sub-section. However, laminar flow and heat 
transfer can be solved without any change to the 
Equations (5) – (7) on reasonable size meshes such as the 
one shown in Figure 3. Figure 4 shows the stream traces, 
pressure and temperature contours at Reynolds numbers 
100 and 500. A small recirculation is observed at Re = 
500 immediately after the middle top turn. As expected 
thermal boundary layer got thinner as the Reynolds 
number was increased from 100 to 500. Pressure contours 
obtained are generally smooth showing that the solution 
procedure used is stable. These laminar results are 

generated using the CBS scheme and the finite element 
spatial discrtization (Nithiarasu, 2003; Nithiarasu et al., 
2004; Nithiarasu et al., 2005; Zienkiewicz et al., 2005). 

At laminar speeds most of the numerical schemes 
develop little difficulties on relatively course meshes. 
However, at moderate and high Reynolds numbers this is 
not true. At moderate Reynolds numbers, which are the 
operating Reynolds numbers of most of the compact heat 
exchangers, turbulence sets in and it will be difficult to 
resolve these using reasonable meshes such as the one 
shown in Figure 3. Also, higher order schemes will be 
necessary even if finer meshes are employed.  To 
overcome these difficulties the Reynolds Averaged 
Navier-Stokes (RANS) equations are widely employed in 
analyzing flow through compact heat exchanger 
geometries.  
 
TURBULENCE MODELLING 
 
RANS Models 
 

For turbulent flow computations, Reynolds averaged 
Navier-Stokes equations of motion are written in 
conservation form as follows 
 
Mean continuity 
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Mean momentum 
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where ūi are the mean velocity components, τRij are the 
turbulent Reynolds stresses. The standard linear model for 
Reynolds stresses (Boussinesq's assumption) is  
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In the above equation, νT  is the turbulent eddy 
viscosity. It is clear from the time averaged Navier-Stokes 
equations (8) – (10) that the additional variable to be 
determined is the turbulent eddy viscosity. The objective 
of all RANS models is to determine this.  The non-linear 
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RANS models are developed by assuming a non-linear 
relation between the Reynolds stresses and strain rate.  
 
 κ-l Model (One Equation Model) 
 

In this model the turbulent eddy viscosity is 
determined from a mixing length and turbulent kinetic 
energy as 

mT lc 2/14/1 κν µ=                                                 (11) 
where cµ is a constant equal to 0.09, κ is the turbulent 

kinetic energy and lm is the mixing length. The mixing 
length lm is related to the length scale of the turbulence L 
as 
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where CD and cµ' are constants. 
 

The model transport equation for turbulent kinetic 
energy is 
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where σκ is the diffusion Prandtl number for turbulent 
kinetic energy. The dissipation, ε, is modelled as 

L
CD

2/3κε =                                                     (14) 

Near solid walls, the Reynolds number tends to be 
zero and the highest mean velocity gradient occurs at the 
solid boundary. Thus, the one equation model has to be 
used in conjunction with empirical wall functions, i.e, νT 
is multiplied by damping function fν = 1-e-0.160Rκ and ε is 
divided by fb = 1-e-0.263Rκ, where Rκ = √κy/ν, with y being 
the near wall distance. The constants are σκ = 1 and CD = 
1.0. 
 
SA Model (One Equation Model) 
 

The Spalart-Allmaras (SA) (Spalart and Allmaras, 
1992) model was first introduced for aerospace 
applications and currently being adopted for 
incompressible flow calculations. The SA model is 
another one equation model, which employs a single 
scalar equation and several constants to model turbulence. 
The scalar equation is 
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where 
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In the above equation S is the magnitude of vorticity. 
The eddy viscosity is calculated as 

1ˆ vT fνν =  
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The parameter fw is given as 
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The constants are cb1 = 0.1355, σ = 2/3, cb2 = 0.622, k = 
0.41, cw1 = cb1/k2 + (1 + cb2)/σ, cw2 = 0.3, cw3 = 2 and cv1 = 
7.1. 
 
Standard κ-ε Model 
 

In this model, the transport equation for κ is the same 
as that in the one-equation model (Equation 13). The 
second transport equation for calculating the isotropic 
turbulence energy dissipation rate ε is 
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where Cε1 is equal to 1.44, Cε2 is equal to 1.92 and  σε  
is the diffusion Prandtl number for isotropic turbulence 
energy dissipation rate and equal to 1.3. These constants 
are proposed by Jones and Launder (1972). In addition, νT 
is evaluated by 
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For near-wall treatments, modifications to the source 
terms of ε equation are needed in the near-wall region. 
Multiplying the coefficients cµ, Cε1 and Cε2, by the 
turbulence damping functions fµ, fε1 and fε2 appropriate 
low Reynolds number status near the walls is achieved. 
These functions are suggested by many and we employ 
the ones suggested by Lam and Bremhorst (1981) for 
steady flows. They are 
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where Rt = κ2/νε 
 

The constants are Cµ = 0.09,  σκ = 1.0,  σε = 1.3, Cε1 = 
1.4 and Cε2 = 1.8. 
 
TURBULENT ENERGY EQUATION 
 

The temperature equation for a turbulent heat transfer 
problem is written as 
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where σT is the turbulent Prandtl number (around unity).  

a

b

c

SA Model κ-ε Model
 

Figure 5 Turbulent flow and heat transfer in a corrugated 
heat exchanger channel. Comparison of SA model and κ-ε 
model results at Re = 1000. (a) Stream traces (b) Pressure 

and (c) Temperature 
 

It is very common to see variations in results obtained 
by different turbulence models. In Figure 5 the results 
from two turbulence models for flow through a corrugated 
channel are shown. As seen, there are minor differences 
visible between the two results. It is generally known that 
two equation models are better than one equation models. 
However, two equation models are more expensive than 
one–equation models. Among various one equation 
models used in the literature, SA model seem to give 
better results (Nithiarasu and Liu, 2005).  

a

b

c

d

 
Figure 6 Flow through a smooth corrugated channel at Re 

= 8280. (a) u1 velocity (b) u2 velocity (c) Pressure (d) 
Turbulent kinetic energy.  κ-l model. 
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Figure 6 shows the results generated for a turbulent 

flow in a smooth corrugated channel using the κ-l model.  
 
ADVANCED TURBULENCE MODELLING 
 
Large Eddy Simulation  
 

The idea of LES is developed based on splitting large 
scale motions from small scales using a filtering operation 
such as 
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If the variables of the the incompressible Newtonian 
equations are subjected to the above filtering operation, 
we get 
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where 
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SGS
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τijSGS  in the above equation is generally modeled using 
various sub-grid scale (SGS) models. The standard SGS 
models (Smagorinsky, 1963), dynamic models (Germano, 
1992) and non-linear models are a few to mention. It is a 
vast area of research and difficult to cover all the theory 
behind these models in a research article. For the sake of 
completeness, we provide the standard SGS model below. 
The SGS stress of Equation (21) is identical to Equation 
(10). However, the eddy viscosity is modeled differently 
here. 
 
Standard SGS Model 
 
The eddy viscosity here is defined as 
 

ων 2)( ∆= CT                                                 (22) 

The most widely used eddy-viscosity model was 
proposed by the meteorologist Smagorinsky 
(Smagorinsky, 1963). Smagorinsky was simulating a two-
layer quasigeotrophic model in order to represent large 
(synoptic) scale atmospheric motions. He introduced an 
eddy viscosity that was supposed to model three-
dimensional turbulence with approximately three-
dimensional (3D) Kolmogorov κ-5/3 cascade in the subgrid 
scales. 

In Smagorinsky's model, a sort of mixing-length 
assumption is made, in which the eddy viscosity is 
assumed to be proportional to the subgrid scale 
characteristic length ∆ and to a characteristic turbulent 
velocity based on the second invariant of the filtered field 
deformation tensor (i.e. strain-rate tensor). In other words, 
the well-known Smagorinsky's model, where the SGS 
time scaling ω in Equation (22) is set as the magnitude of 
the local resolved strain-rate tensor, namely 
 

( ) 2/12|| ijij SSS ==ω                          (23) 
The constant C = Cs = 0.1 – 0.18 is commonly employed.  
The characteristic length ∆ is calculated as 

2/1
321 ),,( xxxf ∆∆∆=∆  

where x1,x2 and x3 are the coordinate directions. Despite 
increasing interest in developing more advanced subgrid 
scale stress models, Smagorinsky's model is still 
successfully used. 
 
Hybrid Methods 
 

Though lesser number of equations is solved in LES 
than RANS models, the number of mesh points needed in 
LES calculations is much larger than RANS calculations.  
To avoid excessive computing requirement of LES, a new 
family of turbulence modeling technique has been 
recently proposed (Spalart et al., 1997, Constantinescu et 
al., 2003). In this method, a RANS model is employed 
near the walls and LES is employed away from the wall.  
These types of models are constructed easily. For 
instance, if we replace the shortest distance to the wall, y 
in SA model by the following relation we get a simple 
hybrid model. 

),min(~ ∆= DESCyy                         (24) 
with ∆ = max(∆x1, ∆x2, ∆x3).  In Equation (24) CDES is a 
constant (around 0.65), which varies depending on the 
problem solved. The subscript DES indicates ‘Detached 
Eddy Simulation’. Equation (24) clearly shows that 
RANS equations are used near the walls and LES is used 
away from the walls.  
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NUMERICAL SOLUTION 
 

In order to achieve numerical solution to a particular 
problem of interest, one has to write the above equations 
in discrete form, both in space and time. These procedures 
are discussed briefly in the following sub sections. 
 
Temporal Discretization 
 

Dicretization of the time term in the governing 
equations are referred to as 'temporal discretization'. The 
common and simple time discretization employed is based 
on the finite difference approach. Several options are 
available to discretize the time term. Backward, forward 
and central difference schemes are some of them. 
 
Spatial Discretization 
 

The two major spatial discretization procedures used 
in practical applications are finite volume and finite 
element methods (Hirsch, 1989, Zienkiewicz and Taylor, 
2000; Lewis et al., 2004). Both the methods are flexible to 
be employed on unstructured meshes and widely used in 
computational fluid dynamics calculations. The vertex 
centered finite volume method and linear finite element 
methods are very similar.  
 
MESH GENERATION 
 

Both structured and unstructured meshes are 
commonly employed in the compact heat exchanger 
analysis. Though accurate, structured meshes are not easy 
to generate for complex geometries often encountered in 
compact heat exchangers. The unstructured meshes are 
generally easy to generate (Figure 7) but need more 
number of nodes to achieve the same accuracy of a 
structured mesh. Also, it is necessary to have a suitable 
discretization method for unstructured meshes.  Obviously 
the meshes should be refined in the region where high 
gradients are expected. If the high gradient region is not 
known, adaptive mesh generation could be used 
(Nithiarasu and Zienkiewicz, 2000; Nithiarasu, 2002).  

When the turbulence models are employed, structured 
meshes close to walls may give a better accuracy. In such 
situations, a hybrid mesh may be employed. The hybrid 
meshes are generated by growing surface normal from 
solid surfaces and placing structured layers by dividing 
the normals. One typical example is shown in Figure 8. 
Here, as seen, the mesh is structured close to the solid 
wall and unstructured away from the wall. Thus, this 

mesh may be able to capture near wall turbulence better 
than a purely unstructured mesh. 
 
DETERMINATION OF HEAT EXCHANGER 
PERFORMANCE FACTORS 
 

The two important quantities of interest in heat 
exchanger applications are the rate of heat transfer 
(Nusselt number) and the flow resistance offered by a 
surface (drag). Often j and f factors are calculated to 
estimate the heat exchanger performance. These factors 
are functions of Nusselt number and pressure drop. In this 
section a brief summary of how to calculate these 
quantities is given. 
 
Nusselt Number 
 

The Nusslet number is derived as follows. Let as 
assume that a hot surface is cooled by a cold fluid stream. 
The heat from the hot surface, which is maintained at a 
constant temperature, is diffused through a boundary layer 
and convected away by the cold stream. The Nusselt 
number relation for this situation may be derived from 
Newtons law of cooling as  
 
 

*








∂
∂

−=
n
TNu                        (25) 
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Figure 7 Unstructured surface mesh over a surface with 
sphereical heat sources. 

 

 
Figure 8 Hybrid meshes. 

 
It should be observed that the local Nusselt number is 

equal to the local, non-dimensional, normal temperature 
gradient. The above definition of the Nusselt number is 
valid for any heat transfer problem as long as the surface 
temperature is constant, or a reference wall temperature is 
known. However, for prescribed heat flux conditions a 
different approach is required to derive the Nuselt 
number.   In such a situation the Nusselt number may be 
calculated as  

*
1












−
=

fw TT
Nu                                        (26) 

The equation is simpler than that derived for a 
constant wall temperature and is limited to the calculation 
of local non-dimensional wall temperatures (assuming Tf 
is constant).  
 
Pressure Drop 
 

Pressure drop is directly obtained from a numerical 
solution if the primitive variable formulation is employed. 
If stream function-vorticity formulation is employed, extra 
pos-processing is necessary to determine the pressure 
drop. 
 
TRANSIENT SOLUTION 
 

All real turbulent flow are transient flows. However, 
the time averaged turbulent flow equations average all 
quantities over time. The transient solutions can still be 
obtained using RANS models with some limitations. For 
many problems of compact exchangers, either transient 
evaluation is important or no steady state solution exists. 
With appropriate time discretization accurate time 
dependent solutions can be obtained. Figure 9 shows 
solutions at Re = 1200 at different non-dimensional times. 
As seen the there is no steady state exist for this problem 
at this Reynolds number. 
 
MORE RESULTS 
 
Heat Transfer in a Corrugated Channel 
 

Figure 10 shows a corrugated geometry channel of a 
compact heat exchanger. One portion of the channel is 
considered for analysis as shown in Figure 10 (bottom). 
The inlet of the channel is assumed to have a uniform 
velocity and a temperature lower than the wall 
temperature. The no-slip conditions are assumed to 
prevail on the solid surfaces. The width of the channel is 
taken as the characteristic dimension of the problem and 
the Reynolds number is defined based on this.  The SA 
model is used in all the calculations.  
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a

b

c

d
 

Figure 9 Transient flow and temperature distribution in a 
offset strip fin heat exchanger (a) t = 0.4 (b) t = 0.6 (c) t = 

0.6 (d) = 0.8 
 

 
Figure 10 Corrugated channel of a compact heat 
exchanger. Geometry and boundary conditions 

 
Figures 4 shows the stream traces, temperature and 

pressure contours at low Reynolds number of 100 and 
500.  As seen no secondary vortices are seen at Re = 100. 
However, at Re = 500 a secondary vortex appear 
immediately after the top corner. At Re = 1000 this vortex 
size increases (Figure 5).  However at higher Reynolds 
numbers the size of this vortex is reduced as shown in 
Figure 11. Also at Re = 2000 and 5000, an additional 
small vortex appear close to the bottom corner.  
 

a

b

c

Re = 2000 Re = 5000

 
Figure 11 Flow and heat transfer in a corrugated channel 

at moderate Reynolds numbers. SA model results (a) 
Stream traces (b) Pressure (c) Temperature 

 
Pressure contours are consistently smooth showing 

that the numerical scheme used is stable (CBS scheme).  
The temperature contours indicate appearance of thinner 
thermal boundary layers as the Reynolds number is 
increased. This indicates increase in rate of heat transfer 
as expected.  

Figure 12 shows the local Nusselt number distribution 
at two Reynolds numbers on both solid walls. In both 
cases and walls, the peak Nusselt number is obtained 
close to the leading edges. The Nusselt number drops 
along the top wall towards the turn in the wall. Close to 
the turn the Nusselt number goes up but drops suddenly 
immediately after the turn due to the slow flow and 
recirculation here. Along the bottom wall the Nusselt 
number decreases towards the turn but increases sharply 
after the turn due to increased mass flux close to this wall.  

The average Nusselt number and pressure drop 
variations with Reynolds number are shown in Figure 13. 
As expected the Nusselt number increases with Reynolds 
numbers on both walls. The value is almost identical on 
both walls to a Reynolds number of 1000. Beyond Re = 
1000, the average Nusselt number on the top wall is 
higher than at the bottom wall.  The Nusselt number 
variation with Reynolds number shows a non-linear 
pattern. The non-dimensional pressure drop (p/ρu∞2) 
reduces as the Reynolds number if increased. The rate of 
reduction decreases as the Reynolds number is increased.  
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Figure 12 Flow and heat transfer in a corrugated channel 
at moderate Reynolds numbers. Local Nusselt number 

distribution at Re = 2000 (top) and Re = 5000 (bottom). 
 
CONCLUSIONS  
 

This article presented an overview of numerical 
modelling approaches employed in the compact heat 
exchanger analysis. Special attention was given to various 
turbulence modeling approaches. Some problems and 
their results are also presented using some of the 
turbulence modeling approaches. Many recently 
developed turbulence modeling approaches are yet to be 
popular among the heat exchanger community. For 
example, Detached Eddy Simulation can potentially 
benefit compact heat exchanger analysis. As the demand 
for more and more precise analysis increases, it will be 
necessary for many researchers to adopt more advanced 
fluid dynamics modeling techniques.  
 
 

 
Figure 13 Flow and heat transfer in a corrugated channel 
at moderate Reynolds numbers. Average Nusselt number 

(top) and pressure drop (bottom) 
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