Engineering Conferences International [ECI Digital Archives](http://dc.engconfintl.org?utm_source=dc.engconfintl.org%2Fbiorefinery_I%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages)

[Biorefinery I: Chemicals and Materials From](http://dc.engconfintl.org/biorefinery_I?utm_source=dc.engconfintl.org%2Fbiorefinery_I%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages) [Thermo-Chemical Biomass Conversion and Related](http://dc.engconfintl.org/biorefinery_I?utm_source=dc.engconfintl.org%2Fbiorefinery_I%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages) [Processes](http://dc.engconfintl.org/biorefinery_I?utm_source=dc.engconfintl.org%2Fbiorefinery_I%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages)

[Proceedings](http://dc.engconfintl.org/proceedings?utm_source=dc.engconfintl.org%2Fbiorefinery_I%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages)

2015

MODELING OF POLLUTANT ADSORPTION ON NOVEL MODIFIED BIOMASS AS A MEANS OF SEAWATER DECONTAMINATION

Dimitrios Sidiras *University Piraeus*

F. Batzias *University Piraeus*

C. Siontorou *University Piraeus*

I. Konstantinou *University Piraeus*

I. Salapa *University Piraeus*

See next page for additional authors Follow this and additional works at: [http://dc.engconfintl.org/biorefinery_I](http://dc.engconfintl.org/biorefinery_I?utm_source=dc.engconfintl.org%2Fbiorefinery_I%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages) Part of the [Chemical Engineering Commons](http://network.bepress.com/hgg/discipline/240?utm_source=dc.engconfintl.org%2Fbiorefinery_I%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Dimitrios Sidiras, F. Batzias, C. Siontorou, I. Konstantinou, I. Salapa, and S. Zervopoulou, "MODELING OF POLLUTANT ADSORPTION ON NOVEL MODIFIED BIOMASS AS A MEANS OF SEAWATER DECONTAMINATION" in "Biorefinery I: Chemicals and Materials From Thermo-Chemical Biomass Conversion and Related Processes", Nicolas Abatzoglou, Université de Sherbrooke, Canada Sascha Kersten, University of Twente, The Netherlands Dietrich Meier, Thünen Institute of Wood Research, Germany Eds, ECI Symposium Series, (2015). http://dc.engconfintl.org/biorefinery_I/15

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Biorefinery I: Chemicals and Materials From Thermo-Chemical Biomass Conversion and Related Processes by an authorized administrator of ECI Digital Archives. For more information, please contact [franco@bepress.com.](mailto:franco@bepress.com)

Authors

Dimitrios Sidiras, F. Batzias, C. Siontorou, I. Konstantinou, I. Salapa, and S. Zervopoulou

Biorefinery I: Chemicals and Materials From Thermo-Chemical Biomass Conversion and Related Processes. September 27-October 2, 2015 Chania (Crete), Greece

MODELING OF POLLUTANT ADSORPTION ON NOVEL MODIFIED BIOMASS AS A MEANS OF SEAWATER DECONTAMINATION

D. Sidiras*, F. Batzias, C. Siontorou, I. Konstantinou, I. Salapa, S. Zervopoulou

Lab. Simulation of Industrial Processes, Dep. Industrial Management & Technology, Sch. Maritime & Industry, Univ. Piraeus, 80 Karaoli & Dimitriou, GR 18534 Piraeus, Greece

Phone Number +302104142360, e-mail sidiras@unipi.gr.

Introduction

- **Introduction**
• Adsorbents collect liquid hydrocarbons on the solid phase, thus they can remove oil spills from the sea surface water. **number of all of the seasure of the seasurface water.**
Adsorbents collect liquid hydrocarbons on the solid phase, thus they can remove oil spills from the seasurface water. **Introduction**
Adsorbents collect liquid hydrocarbor
phase, thus they can remove oil sp
surface water.
The thermochemical treatment of lign
- **Introduction**
• Adsorbents collect liquid hydrocarbons on the solid
phase, thus they can remove oil spills from the sea
surface water.
• The thermochemical treatment of lignocellulosic waste
biomass can provide a fraction **Introduction**
Adsorbents collect liquid hydrocarbons on the solid
phase, thus they can remove oil spills from the sea
surface water.
The thermochemical treatment of lignocellulosic waste
biomass can provide a fraction tha **COLOGET ADSORUT ADDENT CONTRET ADSORUTED ADSORUTED ADSORUTED ADSORUTED ADDED SOUTH:**
The thermochemical treatment of lignocellulosic waste
biomass can provide a fraction that can be used as a
low-cost adsorbent with incre **COCUCTION**
Adsorbents collect liquid hydrocarbons on the solid
phase, thus they can remove oil spills from the sea
surface water.
The thermochemical treatment of lignocellulosic waste
biomass can provide a fraction that c • Ausonemis collect liquid hydrocanolis on the solid
phase, thus they can remove oil spills from the sea
surface water.
• The thermochemical treatment of lignocellulosic waste
biomass can provide a fraction that can be use plase, thus they can remove on spins nom the sea
surface water.
The thermochemical treatment of lignocellulosic waste
biomass can provide a fraction that can be used as a
low-cost adsorbent with increased sorption capacity Suriace water.
The thermochemical treatment of lignocellulosic waste
biomass can provide a fraction that can be used as a
low-cost adsorbent with increased sorption capacity and
biodegradability for cleaning by adsorption The thermochemical treatment of lignocellulosic waste
biomass can provide a fraction that can be used as a
low-cost adsorbent with increased sorption capacity and
biodegradability for cleaning by adsorption the oil spills.
-
- Acid hydrolysis can fractionate the three basic components
of lignocellulosic: hemicelluloses, cellulose and lignin. Acid hydrolysis can fractionate the three basic components
of lignocellulosic: hemicelluloses, cellulose and lignin.
Dilute sulfuric, acid, bas, been, used, to commercially
- Acid hydrolysis can fractionate the three basic components
of lignocellulosic: hemicelluloses, cellulose and lignin.
• Dilute sulfuric acid has been used to commercially
manufacture furfural from cellulosic materials. Acid hydrolysis can fractionate the three basic components
of lignocellulosic: hemicelluloses, cellulose and lignin.
Dilute sulfuric acid has been used to commercially
manufacture furfural from cellulosic materials.
- Acid hydrolysis can fractionate the three basic components
of lignocellulosic: hemicelluloses, cellulose and lignin.
• Dilute sulfuric acid has been used to commercially
manufacture furfural from cellulosic materials.
• Acid hydrolysis can fractionate the three basic components
of lignocellulosic: hemicelluloses, cellulose and lignin.
Dilute sulfuric acid has been used to commercially
manufacture furfural from cellulosic materials.
The hy Acid nydrolysis can rractionate the three basic componen
of lignocellulosic: hemicelluloses, cellulose and lignin.
Dilute sulfuric acid has been used to commercial
manufacture furfural from cellulosic materials.
The hydrol
- Dilute sulfuric acid has been used to commercially
manufacture furfural from cellulosic materials.
• The hydrolysis of cellulose is a significant entry point into
the **biorefinery scheme** based on carbohydrates for the
p Dilute sulturic acid has been used to commercially
manufacture furfural from cellulosic materials.
The hydrolysis of cellulose is a significant entry point into
the **biorefinery scheme** based on carbohydrates for the
produ manuracture runtural rrom cellulosic materials.
The hydrolysis of cellulose is a significant entry point into
the **biorefinery scheme** based on carbohydrates for the
production of biofuels and biochemicals.
The long-term s The hydrolysis of cellulose is a significant
the **biorefinery scheme** based on carboh
production of biofuels and biochemicals.
The long-term success of the **biorefi**
depends on the development of energe
processes to conver
- This work focuses primarily on modeling the process of
adsorption of diesel and crude oil on modified biomass
fraction. This work focuses primarily on modeling the process of
adsorption of diesel and crude oil on modified biomass
fraction. fraction. • This work focuses primarily on modeling the process of
adsorption of diesel and crude oil on modified biomass
fraction.
• The experimental measurements were performed using
mainly seawater, and simulated/substitute seawa This work focuses primarily on modeling the process of
adsorption of diesel and crude oil on modified biomass
fraction.
The experimental measurements were performed using
mainly seawater, and simulated/substitute seawater.
-
- This work focuses primarily on modeling the process of
adsorption of diesel and crude oil on modified biomass
fraction.
• The experimental measurements were performed using
mainly seawater, and simulated/substitute seawa This work focuses primarily on modeling the process of
adsorption of diesel and crude oil on modified biomass
fraction.
The experimental measurements were performed using
mainly seawater, and simulated/substitute seawater. This work locuses primality on modeling the process of
adsorption of diesel and crude oil on modified biomass
fraction.
The experimental measurements were performed using
mainly seawater, and simulated/substitute seawater. • The experimental measurements were performed using
mainly seawater, and simulated/substitute seawater.
• The modeling of adsorption of mixtures of fluids and
colloids, containing water, hydrocarbons, salts,
dispersants a The experimental measurements were perform
mainly seawater, and simulated/substitute seawa
The modeling of adsorption of mixtures of flu
colloids, containing water, hydrocarbons,
dispersants and predetermined contaminants
-

Experimental

- **Experimental**
• The wheat straw was obtained from the Kapareli village,
close to the city of Thiva (Thebes) city at the Kopaida
area (former lake Kopaida) in central Greece. **Experimental**
The wheat straw was obtained from the Kapareli village,
close to the city of Thiva (Thebes) city at the Kopaida
area (former lake Kopaida) in central Greece.
The moisture content of the material was 9% w/w. **Experimental**
The wheat straw was obtained from the Kapareli village,
close to the city of Thiva (Thebes) city at the Kopaida
area (former lake Kopaida) in central Greece.
The moisture content of the material was 9% w/w. **Experimental**
• The wheat straw was obtained from the Kapareli village,
close to the city of Thiva (Thebes) city at the Kopaida
area (former lake Kopaida) in central Greece.
• The moisture content of the material was 9% w **Experimental**
• The wheat straw was obtained from the Kapareli village,
close to the city of Thiva (Thebes) city at the Kopaida
area (former lake Kopaida) in central Greece.
• The moisture content of the material was 9% w
-
- cm.

Untreated (left) and pretreated (right) wheat straw; particle size 14-24 cm; pretreatment conditions: 100 oC, sulfuric acid 0.45 M, 4 h, and liquid-to-solid ratio = 20:1.

The wheat straw was pretreated by sulfuric acid hydrolysis; the acid hydrolysis process was performed in a 20 L CHEMGLASS reactor for scaling up.

Field-water sampling locations (two ports for seawater, one lake and one stream):

- ΛΠ = Piraeus Port,
- ΛΣ = Skaramaga Port,
- ΛΚ = Koumoundourou Lake, and
- P6 = Pikrodafnis Stream.

Sampling period: 2013-2015.

Kinetic models

Oil adsorbency (diesel and crude oil) for untreated and pretreated wheat straw vs. adsorption time; oil spill on seawater (Piraeus Port); the fractional kinetic model was applied.

Diesel and crude oil amount adsorbed on untreated (UWS)
and modified wheat straw (MWS) for spills formed on five
types of water; *q* estimated according to the second-order Diesel and crude oil amount adsorbed on untreated (UWS)
and modified wheat straw (MWS) for spills formed on five
types of water; q estimated according to the second-order
kinetic model. Diesel and crude oil amount adsorbed on untreated (UWS)
and modified wheat straw (MWS) for spills formed on five
types of water; q estimated according to the second-order
kinetic model. Diesel and crude oil amount adsorbeed and modified wheat straw (MWS) for types of water; q estimated according kinetic model. el and crude oil amount adsorbed on untreated (UWS)
modified wheat straw (MWS) for spills formed on five
s of water; q estimated according to the second-order
ic model.
 $q(g/g)$ Diesel/UWS Diesel/MWS Crude oil/ UWS Crude oi

Adsorbencies of diesel, crude oil, decane and ndodecane (a) on untreated and (b) on modified wheat straw; hydrocarbon spill on freshwater, substitute seawater, seawater, stream water and lake water

 (a) (b)

Oil adsorbencies on untreated and modified wheat straw for (a) diesel and (b) crude oil spills with or without clay (simulating suspended solids in shoreline water) on substitute seawater and seawater.

Oil adsorbencies on untreated and pretreated wheat straw for (a) diesel and (b) crude oil spills on seawater under the effect of stirring (simulating sea waves).

Oil adsorbencies on untreated and modified wheat straw of (a) diesel and (b) crude oil spills with or without **dispersant** on freshwater, substitute seawater, seawater, stream water and lake water.

Conclusions

- **Conclusions**
• The fractional power kinetic model presented the best
fitting on the experimental data of the adsorption process
for diesel, crude oil, decane and n-dodecane spills on **Conclusions**
The fractional power kinetic model presented the best
fitting on the experimental data of the adsorption process
for diesel, crude oil, decane and n-dodecane spills on
untreated and modified lignocellulosic b **Conclusions**
The fractional power kinetic model presented the best
fitting on the experimental data of the adsorption process
for diesel, crude oil, decane and n-dodecane spills on
untreated and modified lignocellulosic b **Conclusions**
The fractional power kinetic model presented the best
fitting on the experimental data of the adsorption process
for diesel, crude oil, decane and n-dodecane spills on
untreated and modified lignocellulosic b **Conclusions**
• The fractional power kinetic model presented the best
fitting on the experimental data of the adsorption process
for diesel, crude oil, decane and n-dodecane spills on
untreated and modified lignocellulosic **Conclusions**
The fractional power kinetic model presented the best
fitting on the experimental data of the adsorption process
for diesel, crude oil, decane and n-dodecane spills on
untreated and modified lignocellulosic b The fractional power kinetic model pr
fitting on the experimental data of the a
for diesel, crude oil, decane and n-do
untreated and modified lignocellulosic b
Crude oil adsorption on original and
straw showed significantl • The fractional power kinetic model presented the best
fitting on the experimental data of the adsorption process
for diesel, crude oil, decane and n-dodecane spills on
untreated and modified lignocellulosic biomass.
• Cr The fractional power kinetic model presented the best
fitting on the experimental data of the adsorption process
for diesel, crude oil, decane and n-dodecane spills on
untreated and modified lignocellulosic biomass.
Crude fitting on the experimental data of the
for diesel, crude oil, decane and n-
untreated and modified lignocellulosid
Crude oil adsorption on original a
straw showed significantly the highes
types of water.
The oils' adsorbe
-
-
- The presence of clay (simulating suspended solids in
shoreline water) had negative impact in all cases of oil
adsorbency on wheat straw and especially in the case of shoreline water) had negative impact in all cases of oil adsorbency on wheat straw and especially in the case of crude oil spill on seawater and substitute seawater • The presence of clay (simulating suspended solids in
shoreline water) had negative impact in all cases of oil
adsorbency on wheat straw and especially in the case of
crude oil spill on seawater and substitute seawater
•
- as regards oil spill adsorbency, especially in the case of diesel and crude oil on modified wheat straw. shoreline water) had negative impact in all cases of oil
adsorbency on wheat straw and especially in the case of
crude oil spill on seawater and substitute seawater
• The effect of stirring (simulating sea waves) was posit
- on diesel and crude oil spills adsorbency regarding all types of water.

Acknowledgment

Acknowledgment
• This research has been co-financed by the European
Union (European Social Fund – ESF) and Greek national
funds through the Operational Program "Education and **Acknowledgment**
This research has been co-financed by the European
Union (European Social Fund – ESF) and Greek national
funds through the Operational Program "Education and
Lifelong Learning" of the National Strategic Re funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference **Acknowledgment**
This research has been co-financed by the European
Union (European Social Fund – ESF) and Greek national
funds through the Operational Program "Education and
Lifelong Learning" of the National Strategic Re THALIS. Investing in knowledge society through the **Acknowledgment**
This research has been co-financed by the European
Union (European Social Fund – ESF) and Greek national
funds through the Operational Program "Education and
Lifelong Learning" of the National Strategic Re **ACKIOWIEGGITIETIT**
This research has been co-financed by the European
Union (European Social Fund – ESF) and Greek national
funds through the Operational Program "Education and
Lifelong Learning" of the National Strategic Biomass for Hydrocarbons Adsorption in Aquatic Environments.

