Engineering Conferences International ECI Digital Archives

Fluidization XV

Proceedings

5-23-2016

Pickup velocity of nanoparticles

Jia Wei Chew Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Singapore, jchew@ntu.edu.sg

J. Ruud van Ommen Chemical Engineering, Delft University of Technology, The Netherlands

Aditya Anantharaman School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore

Follow this and additional works at: http://dc.engconfintl.org/fluidization_xv Part of the <u>Chemical Engineering Commons</u>

Recommended Citation

Jia Wei Chew, J. Ruud van Ommen, and Aditya Anantharaman, "Pickup velocity of nanoparticles" in "Fluidization XV", Jamal Chaouki, Ecole Polytechnique de Montreal, Canada Franco Berruti, Wewstern University, Canada Xiaotao Bi, UBC, Canada Ray Cocco, PSRI Inc. USA Eds, ECI Symposium Series, (2016). http://dc.engconfintl.org/fluidization_xv/23

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Fluidization XV by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Pickup Velocity of Nanoparticles

Aditya Anatharaman^a, <u>J. Ruud van Ommen^b</u>, Jia Wei Chew^a Nanyang Technological University (Singapore) Delft University of Technology (Netherlands)

Fluidization XV, May 2016

Introduction

Pneumatic transport reactor for coating nanoparticles

Catalysts

Q-dots for PV

Li-ion batteries

Nuclear medicine

van Ommen et al. (2015) J. Vac. Sci. Technol. A 33, 021513

Coming 6 months: scale up to 1kg/min via

Introduction

- Critical velocities for gas-solid pneumatic conveying
 - Minimum pickup velocity (U_{pu}): Minimum fluid velocity necessary to start the motion of a particle initially at rest (Halow 1973)
 - Minimum saltation velocity (U_{salt}): Maximum fluid velocity at which the suspended particles commence to sediment (Cabrejos and Klinzing 1992)
- Why U_{pu} is important
 - Start-up; re-suspesion
 - Provides operational rule-of-thumb

First systematic study of pneumatic conveying of nanoparticles

Halow JS, (1973). Chemical Engineering Science, 28, 1-12 Cabrejos FJ, Klinzing GE (1992). Powder Technology, 72, 51-61

Our six "standard" powders

Commercial name (Evonik)	Material	Surf. type	Particle diam. (nm)	Particle density (kg/m ³)	Hamaker coeff. (J)
Aerosil 130	SiO ₂	Polar	16	2200	6.6·10 ⁻²⁰
Aerosil R972		Apolar			
Aeroxide Alu C	AI_2O_3	Polar	13	3600	1.45·10 ⁻¹⁹
Aeroxide Alu C805		Apolar			
Aeroxide P25	TiO ₂	Polar	21	4000	1.54·10 ⁻¹⁹
Aeroxide T805		Apolar			

Earlier studies with these powders

Fluidized bed: Tahmasebpoor et al. Phys. Chem. Chem. Phys. 15(2013) 5788 Powder flow shear tester: Xanthakis et al., *Powder Technol.* 286 (2015) 156

Procedure to Measure U_{pu}

Determining U_{pu}

U_{pu} Values

Apolar vs Polar

Polar nanoparticles: Hydroxyl groups on surface,

Apolar nanoparticles: Hydroxyl groups absent, replaced by organic groups during hydrophobization

Tahmasebpoor et al. **(2013)** Physical Chemistry Chemical Physics, 15, 5788

'Geldart Groups'

Three-zone model of Kalman et al. (2005)

- Zone I: Re_p*=5Ar^{3/7}
 for Ar≥16.5
- Zone II: Re_p*=16.7 for 0.45<Ar<16.5

$$\operatorname{Re}_{p}^{*} = \frac{\rho_{p}d_{p}U_{pu}}{\mu_{f}\left[1.4 - 0.8exp\left(-\frac{D}{D_{ref}}\right)\right]} \quad \operatorname{Ar} = \frac{g\rho_{f}(\rho_{p} - \rho_{f})d_{p}^{3}}{\mu_{f}^{2}}$$

Kalman et al., (2005). Powder Technology 160, 103-113;

'Geldart Groups'

• U_{pu} an order-of-magnitude lower than predicted.

 $- \operatorname{Re}_{p}^{*}$ order-of-magnitude smaller than Zone III prediction.

U_{pu} values agree well with extrapolated Zone I (Geldart Group B) correlation

Nanoparticle Agglomerates ¹¹

Unsurprisingly, nanoparticles are entrained in agglomerates

Zones in Pneumatic Conveying

Primary and complex agglomerates agree well with Zone I (Geldart Group B)

Conclusions

- Nanoparticles can be pneumatically transported!
- Polar nanoparticles have greater U_{pu} than apolar nanoparticles.
- Difference between U_{pu} polar and apolar species decrease in the order: SiO₂ > Al₂O₃ > TiO₂
- U_{pu} of nanoparticles lower than predicted
 - \rightarrow Nanoparticles are entrained as porous micron sized agglomerates.
- Behavior of nanoparticles corresponds more with pickup Zone I (Geldart Group B) than Zone III (Geldart Group C).

Acknowledgement

The authors thank the financial support from

- the National Research Foundation (NRF), Prime Minister's Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) program (M4098010)
- Singapore's Ministry of Education Academic Research Fund Tier 1 (M4011437).

Pickup Velocity of Nanoparticles

Aditya Anatharaman^a, Ruud van Ommen^b, Jia Wei Chew^a

Nanyang Technological University (Singapore) Delft University of Technology (Netherlands)

