5-23-2016

Pickup velocity of nanoparticles

Jia Wei Chew
Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Singapore, jchew@ntu.edu.sg

J. Ruud van Ommen
Checmical Engineering, Delft University of Technology, The Netherlands

Aditya Anantharaman
School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore

Follow this and additional works at: http://dc.engconfintl.org/fluidization_xv

Part of the [Chemical Engineering Commons](http://dc.engconfintl.org/fluidization_xv)

Recommended Citation

Pickup Velocity of Nanoparticles

Aditya Anatharamana, J. Ruud van Ommenb, Jia Wei Chewe
Nanyang Technological University (Singapore)
Delft University of Technology (Netherlands)

Fluidization XV, May 2016
Introduction

Pneumatic transport reactor for coating nanoparticles

- Titanium oxide nanopowder (P25)
- 27 m long reactor
- 4 mm int. diameter
- 5 m/s gas velocity
- Injection of platinum precursor (MeCpPtMe3)
- Collection 1 g / min product

van Ommen et al. (2015)
J. Vac. Sci. Technol. A 33, 021513

Coming 6 months: scale up to 1kg/min via

Catalysts
Q-dots for PV
Self-healing mat.
Li-ion batteries
Controlled release
Nuclear medicine

delftIMP
INTENSIFIED MATERIALS PRODUCTION
Introduction

• Critical velocities for gas-solid pneumatic conveying

 – Minimum pickup velocity (U_{pu}): Minimum fluid velocity necessary to start the motion of a particle initially at rest (Halow 1973)

 – Minimum saltation velocity (U_{salt}): Maximum fluid velocity at which the suspended particles commence to sediment (Cabrejos and Klinzing 1992)

• Why U_{pu} is important
 – Start-up; re-suspension
 – Provides operational rule-of-thumb

First systematic study of pneumatic conveying of nanoparticles

Our six “standard” powders

<table>
<thead>
<tr>
<th>Commercial name (Evonik)</th>
<th>Material</th>
<th>Surf. type</th>
<th>Particle diam. (nm)</th>
<th>Particle density (kg/m³)</th>
<th>Hamaker coeff. (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerosil 130</td>
<td>SiO₂</td>
<td>Polar</td>
<td>16</td>
<td>2200</td>
<td>6.6⋅10⁻²⁰</td>
</tr>
<tr>
<td>Aerosil R972</td>
<td></td>
<td>Apolar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aeroxide Alu C</td>
<td>Al₂O₃</td>
<td>Polar</td>
<td>13</td>
<td>3600</td>
<td>1.45⋅10⁻¹⁹</td>
</tr>
<tr>
<td>Aeroxide Alu C805</td>
<td></td>
<td>Apolar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aeroxide P25</td>
<td>TiO₂</td>
<td>Polar</td>
<td>21</td>
<td>4000</td>
<td>1.54⋅10⁻¹⁹</td>
</tr>
<tr>
<td>Aeroxide T805</td>
<td></td>
<td>Apolar</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Earlier studies with these powders

Fluidized bed: Tahmasebpoor et al. Phys. Chem. Chem. Phys. 15(2013) 5788

Powder flow shear tester: Xanthakis et al., *Powder Technol.* 286 (2015) 156
Procedure to Measure U_{pu}

1. Fill nanoparticle sample in chamber
2. Weigh bottom part of Section B and assemble apparatus
3. Air supply 120s
4. Disassemble and weigh bottom part of section B again to note mass loss
Determining U_{pu}

Mass loss curve for Polar SiO$_2$

$U_{pu} = 0.459$ m/s
U_{pu} Values

![Graph showing U_{pu} values for different materials. The x-axis represents Silicon dioxide, Aluminum oxide, and Titanium dioxide, while the y-axis represents U_{pu} in m/s. The graph distinguishes between Apolar (diamonds) and Polar (diamonds) materials.]
Apolar vs Polar

Polar nanoparticles: Hydroxyl groups on surface,
Apolar nanoparticles: Hydroxyl groups absent, replaced by organic groups during hydrophobization

Tahmasebpoor et al. (2013) Physical Chemistry Chemical Physics, 15, 5788
Three-zone model of Kalman et al. (2005)

- **Zone I**: \(Re_p^* = 5 Ar^{3/7} \) for \(Ar \geq 16.5 \)
- **Zone II**: \(Re_p^* = 16.7 \) for \(0.45 < Ar < 16.5 \)
- **Zone III**: \(Re_p^* = 21.8 Ar^{1/3} \) for \(Ar \leq 0.45 \)

Geldart Group A

\[Re_p^* = \frac{\rho_p d_p u_{pu}}{\mu_f \left[1.4 - 0.8 \exp \left(-\frac{D}{D_{ref}} \right) \right]} \]

\[Ar = \frac{g \rho_f (\rho_p - \rho_f) d_p^3}{\mu_f^2} \]

• U_{pu} an order-of-magnitude lower than predicted.
 – Re_p^* order-of-magnitude smaller than Zone III prediction.
• U_{pu} values agree well with extrapolated Zone I (Geldart Group B) correlation
Unsurprisingly, nanoparticles are entrained in agglomerates.
Zones in Pneumatic Conveying

Primary and complex agglomerates agree well with Zone I (Geldart Group B)
Conclusions

• Nanoparticles can be pneumatically transported!
• Polar nanoparticles have greater U_{pu} than apolar nanoparticles.
• Difference between U_{pu} polar and apolar species decrease in the order:
 \[\text{SiO}_2 > \text{Al}_2\text{O}_3 > \text{TiO}_2 \]
• U_{pu} of nanoparticles lower than predicted
 \(\rightarrow \) Nanoparticles are entrained as porous micron sized agglomerates.
• Behavior of nanoparticles corresponds more with pickup Zone I (Geldart Group B) than Zone III (Geldart Group C).

Acknowledgement

The authors thank the financial support from
• the National Research Foundation (NRF), Prime Minister’s Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) program (M4098010)
• Singapore’s Ministry of Education Academic Research Fund Tier 1 (M4011437).
Pickup Velocity of Nanoparticles

Aditya Anatharamana, Ruud van Ommenb, Jia Wei Chewa
Nanyang Technological University (Singapore)
Delft University of Technology (Netherlands)