Insights into dislocation grain-boundary interaction by X-ray μLaue diffraction

Christoph Kirchlechner
Max-Planck-Institut für Eisenforschung, kirchlechner@mpie.de

Nataliya Malyar
Max-Planck-Institut für Eisenforschung

Peter Imrich
Max-Planck-Institut für Eisenforschung

Gerhard Dehm
Max-Planck-Institut für Eisenforschung

Follow this and additional works at: http://dc.engconfintl.org/nanomechtest_v

Part of the Materials Science and Engineering Commons

Recommended Citation

This Abstract is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Nanomechanical Testing in Materials Research and Development V by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
The deformation behavior of metallic single crystals is size dependent, as shown by several studies during the last decade. Nevertheless, real structures exhibit different interfaces like grain, twin or phase boundaries. Due to the possibly higher stresses at the micron scale, the poor availability of dislocation sources and the importance of diffusion in small dimensions the mechanical behavior of samples containing interfaces can considerably differ from bulk material.

In the talk we show the first in situ µLaue compression experiments on micron sized, bi-crystalline samples. Three different grain-boundary types will be presented and discussed (i) Large Angle grain Boundaries (LAGBs) acting as strong obstacle for dislocation slip transfer; (ii) LAGBs allowing for easy slip transfer and (iii) coherent sigma 3 twin-boundaries. The talk will focus on pile-up of dislocations, slip transfer mechanisms, storage of dislocations and dislocation networks at the LAGB.