Development, manufacturing, and supply of MSD’s Ebola vaccine

Jeffrey T. Blue

Director Vaccine Drug Product Development, Merck Sharp & Dohme Corp., USA, jeff_blue@merck.com

Follow this and additional works at: http://dc.engconfintl.org/vaccine_vi

Part of the Engineering Commons

Recommended Citation
Development, Manufacturing, and Supply of MSD’s Ebola Vaccine

Jeffrey T. Blue
Director, Vaccine Drug Product Development
Merck & Co. Inc.

Elements of this program has been funded in whole or in part with Federal Funds from the Department of Health and Human Services; Office of the Assistant Secretary for Preparedness and Response; Biomedical Advanced Research and Development Authority under Contract Number: HHSO100201500002C
Presentation Outline

- Ebola Background
 - 2014 Outbreak
 - Clinical Candidates During Outbreak
 - Merck’s Candidate
 - WHO Guinea Ring Efficacy Results
- Merck’s Commitment to Ebola
 - Merck’s Approach to Develop an Ebola Vaccine
 - Typical Vaccine Development
 - Merck’s Ebola Vaccine Development Timeline
- Process Development
 - Scope of Work
 - Vaccine Path to PPQ
 - Upstream
 - Downstream
 - Drug Product
 - Site Readiness
- Program Challenges
- Applicability to Other Vaccines and Biologics
- Conclusions
- Partners, Alliances, and Acknowledgements
Ebola Virus

• Member of the filoviridae family of viruses, first discovered in 1976 in the Ebola river (Zaire, now, Democratic Republic of Congo)

• Hemorrhagic fever and deadly disease caused by infection with one of the Ebola virus strains (Human: Zaire, Sudan, Ivory Coast, Bundibugyo; non-human primates: Reston)

• Animal-borne virus, with fruit bats as most likely reservoir
 − Natural reservoir host not yet identified

• Transmission by direct contact (through broken skin or mucous membranes) with blood or body fluids of infected individual or contaminated objects, and infected fruit bats or primates
Ebola Virus Disease: Clinical Features

- Acute onset; typically 8 -10 days after exposure (range 2 – 21 days)
- Nonspecific early clinical signs and symptoms
 - Initial
 - Fever, chills, myalgia, malaise, anorexia
 - After 5 days, GI symptoms:
 - Nausea, vomiting, watery diarrhea, abdominal pain
 - Hemorrhagic symptoms in 18% cases
- Symptoms progress to:
 - Hemorrhagic disease
 - Hypovolemic shock, multi-organ failure
 - Death (case fatality rate >50%)
2014 – 2016 Ebola Virus Outbreak

- First case in Guinea March 2014 and peaked in Aug–Oct ’14
 - WHO declaration of Public Health Emergency on International Concern (PHEIC) on August 8th
- Zaire ebolavirus species
- Cumulatively 28,000+ cases and 11,000+ deaths by January 2016
 - > 10 times more cases during the current epidemic than in all previous outbreaks combined
 - Impacted: Guinea, Liberia, Sierra Leone
 - A few cases reported in Nigeria, Mali, Senegal, Spain, US, UK, and Italy
- WHO declares outbreak over on January 14th, 2016
 - New cases have been detected in Sierra Leone since

[News release]
14 JANUARY 2016 | LIBERIA - Today, WHO declares the end of the most recent outbreak of Ebola virus disease in Liberia and says all known chains of transmission have been stopped in West Africa. But the Organization says the job is not over, more flare-ups are expected and that strong surveillance and response systems will be critical in the months to come.

Liberia was first declared free of Ebola transmission in May 2015, but the virus was re-introduced twice since then, with the latest flare-up in November. Today’s announcement comes 42 days (two 21-day incubation cycles of the virus) after the last confirmed patient in Liberia tested negative for the disease 2 times.

Ebola Clinical Candidates During 2014 – 2016 Western African Outbreak

<table>
<thead>
<tr>
<th>Category</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccines</td>
<td>13</td>
<td>30</td>
<td>41</td>
</tr>
<tr>
<td>Therapies</td>
<td>15</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>13</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

Clinical trials for Ebola vaccines and therapeutics (2014-2015)

- **% trials in Africa**
 - Vaccines: 39%
 - Therapeutics: 60%

1. Considering different vaccine combinations/variants as distinct
2. Including therapies only given under compassionate use
3. Products that have received FDA or WHO emergency use listing; up to 80 are in some stage of development
4. Based on triangulation from public sources and stakeholder interviews. If a trial spans multiple phases or is unclassified, classification here is based on the highest phase or the trial’s primary outcomes

SOURCE: Clinicaltrials.gov (September 2015), WHO ICTRP portal, Pan-African Trial Registry, Stakeholder interviews, WHO categorization of drugs for Ebola, WHO Diagnostics, FDA Emergency Use Authorizations

Taken from WHO Report on Ebola R&D Landscape of Official Candidates and Trials (October 2015)
Development History for Merck’s Ebola Vaccine Candidate

• Application of the rVSV technology and initial development of the candidate Ebola vaccine was accomplished by Public Health Agency of Canada (PHAC)

• PHAC licensed the filovirus vaccine technology to NewLink Genetics to further development and initiate clinical development

• The initial PHAC clinical lot was manufactured in 2013 by the German CMO and utilized in most clinical trials
 • NewLink Genetics filed IND and started Phase I trials (3 sites) and oversaw the clinical development
 • Funding to support development and clinical lots completed by multiple partners
 • BARDA, DTRA, Wellcome Trust, NIH, NIAID and WHO
 • PHAC lot utilized to support Phase II/III in West Africa (Liberia, Guinea, Sierra Leone)
 • NewLink Genetics continued to work with IDT for additional clinical lots and process development

• Towards the end of 2014, Merck and NewLink Genetics Corp. entered into an exclusive worldwide license agreement
 • Merck assumed responsibility to research, develop, manufacture, and distribute the investigational Ebola vaccine candidate (rVSV-ΔG-ZEBOV-GP) and other filovirus based vaccines based on rVSV technology

• Merck, NewLink Genetics and a global network of partners are collaborating in unprecedented ways with the singular focus on speeding the research, development and deployment of a well-tolerated and effective Ebola vaccine
Composition of Merck’s Ebola Vaccine Candidate (rVSV- ΔG-ZEBOV-GP)

Vector = live attenuated recombinant vesicular stomatitis virus (rVSV)

- Antigen = Zaire Ebola virus (ZEBOV) glycoprotein (GP)
 - VSV G (envelope) GP replaced with Ebola-Zaire envelope GP
 - Eliminates VSV GP toxicity and changes host range

- rVSV-ΔG-ZEBOV-GP is replication-competent, displaying ZEBOV GP in native conformation on the surface of the VSV particle
 - Preclinical and clinical data suggest that a single dose of V920 is sufficient for inducing rapid, protective responses
 - Consistent with utility in resource poor environments and in an outbreak situation
WHO Guinea Ring Vaccination Trial: Interim Analysis Efficacy Results

Lancet publication of Interim Analysis on July 31st 2015

- First evidence of efficacy in human subjects for any Ebola vaccine
- No EVD cases in either immediate or delayed arm from Day 6 post dose onward
- Study expanded into Sierra Leone with all additional subjects vaccinated upon enrollment (no delayed arm)
- Enrolling adolescents and children > 6 years old

<table>
<thead>
<tr>
<th>Number of individuals (clusters)</th>
<th>Immediate</th>
<th>Delayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>All vaccinated in immediate versus all eligible in delayed (primary analysis)</td>
<td>2014 (48)</td>
<td>2380 (42)</td>
</tr>
<tr>
<td>All eligible and consented</td>
<td>2048 (48)</td>
<td>1930 (42)</td>
</tr>
<tr>
<td>All eligible (eligible adults, contacts and contacts of contacts)</td>
<td>3035 (48)</td>
<td>2380 (42)</td>
</tr>
<tr>
<td>All (all contacts and contacts of contacts)</td>
<td>4123 (48)</td>
<td>3528 (42)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of cases at <10 days (affected clusters)</th>
<th>Immediate</th>
<th>Delayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>All vaccinated in immediate versus all eligible in delayed (primary analysis)</td>
<td>9 (4)</td>
<td>10 (5)</td>
</tr>
<tr>
<td>All eligible and consented</td>
<td>10 (5)</td>
<td>18 (9)</td>
</tr>
<tr>
<td>All eligible (eligible adults, contacts and contacts of contacts)</td>
<td>18 (9)</td>
<td>21 (9)</td>
</tr>
<tr>
<td>All (all contacts and contacts of contacts)</td>
<td>21 (9)</td>
<td>25 (13)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of cases at ≥10 days (affected clusters)</th>
<th>Immediate</th>
<th>Delayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccine efficacy/effectiveness† (95% CI)</td>
<td>100% (74.7 to 100)</td>
<td>100% (70.8 to 100)</td>
</tr>
<tr>
<td>Vaccine efficacy/effectiveness‡ (95% CI)</td>
<td>75.1% (-7.1 to 94.2)</td>
<td>76.3% (-15.5 to 96.1)</td>
</tr>
<tr>
<td>p value$</td>
<td>0.0036</td>
<td>0.0194</td>
</tr>
</tbody>
</table>

*All cases occurred in unvaccinated individuals. †Four cases were vaccinated and developed symptoms on day 0, 2, 6, or 6 after vaccination. ‡From fitting a β-binomial distribution to the cluster-level numerators and denominators and using an inverted likelihood ratio test to identify the lower bound for vaccine efficacy (first two columns); from Cox proportional hazards model to estimate vaccine effectiveness (last two columns). $From Fisher’s exact test (two-sided).

Table 2: Calculations of vaccine efficacy and vaccine effectiveness based on different study populations
Merck’s Approach to Address Potential Vaccine Needs and Vaccine Availability

- Move monovalent frozen product forward for licensure as efficiently as possible
 - Complete clinical development to produce required safety database, demonstrate evidence of clinical benefit, and manufacturing consistency
 - Prepare commercial manufacturing facility and execute on manufacturing scale-up and PPQ activities

- Collaborate with current dose owners and stakeholders to align on best use of existing doses of vaccine (~150 – 170K currently exist)
 - Through expanded ring vaccination trials, new/expanded trials for at-risk US-based and ex-US populations, trials in special populations etc.

- Ramp up Merck manufacturing capabilities (Pilot Plant) to produce additional doses that could be deployed in the case of expanded or new outbreak (not commercial doses; only for clinical trials or emergency use)
 - Ethical obligation to ensure vaccine available in the event of another epidemic
 - Merck now has successfully manufactured and stored ~120K doses and ~500K dose equivalents

- Kick off early development of thermostable product(s) to protect against key Filoviruses
Typical Timeline for Vaccine Development

10 to 20 Years
Standard timeline to develop a vaccine.

2014 — 2024+
Merck’s Vaccine Milestones and Accelerated Timeline to Develop the Ebola Vaccine

Over 18,000 volunteers vaccinated to date

31 July 15
Phase III ring vaccination trial interim analysis results demonstrate vaccine efficacy

17 Aug 15
Initiation of Merck Phase III Safety and Lot Consistency Study (P012) in US/EU/Canada

23 Aug 15
Siting Decision and Process Development Kicked-off Internally

Sep 15
CAPEX Scoping Project Initiated at Manufacturing Site

Nov 15
BARDA Lots F/F @ Merck

Dec 15
Manufacture of BDS Lots for EMU at Anticipated Commercial Scale

Jan/Feb 16
Manufacture of DP Lots for EMU within Merck Facility

13 Oct 2014
Start of Phase I trials rVSV-ZEBOV-GP

25 Jan 2015
Dose selection decision for efficacy trials

2 Feb 2015
Initiation of NIH-Liberia PREVAIL Phase II/III study

23 Mar 2015
Initiation of WHO Phase III study in Guinea

09 April 2015
Initiation of CDC STRIVE Phase III trial in Sierra Leone

22 Dec 2015
WHO agrees to review an Emergency Use Assessment and Listing submission
Process Development
Scope of Process Development

- **Obtain data to support BLA filing**
 - Generate necessary lab-scale development data to support critical ranges
 - Generate comparison data of clinical and commercial processes

- **Develop commercial scale-up process and move from existing clinical process**
 - Show comparability between clinical and expected commercial process
 - Minimize changes to existing process to shorten timelines and accelerate program
 - Utilize knowledge gained through EMU manufacturing for scale-up development

- **QbD Risk based approach to parameter studies**
 - Gain process knowledge and explore processing surface to ensure process parameters are in a stable zone
 - Team not investigating all areas of process, but rather focused on key areas
 - Expedites process development and increases team’s efficiency in delivering a commercial process
 - Utilizing clinical scale targets
 - Only adjusting unit operations necessary to ensure a robust manufacturing process is achieved (i.e. TFF)
Vaccine Process Flow

- Cell Seeding
- Cell Passage
- Virus Infection
- Virus Harvest
- Enzyme Treatment
- Virus Purification and Concentration
- Freeze at ≤ -60°C
- Formulation (Thaw, Dilute, Blend)
- Fill Vials
- Stopper/Cap
- Inspect
- Label
- Package
- Freeze at ≤ -60°C
- Ship

- DS and DP is stored and kept at ≤ -60°C
- Preliminary data indicates DP stable at 2-8ºC for 3 – 4 weeks
- Next generation vaccine to explore a more thermostable formulation
Vaccine Path to PPQ (Upstream and Downstream Drug Substance Development)

- **Upstream Development**
 - MOI
 - Plant density
 - Day of Infection
 - Harvest Time
 - PBS Rinse
 - Medium Age

- **Downstream Development**
 - Depth Filtration Pmax Studies
 - Enzyme Rxn
 - DOE
 - Time course studies
 - TFF
 - DOE
 - Impact of Loading

- **Other DS Studies**
 - Hold time studies
 - Stock seed
 - HVF
 - CH
 - RVH
 - Investigate various RB sizes

Process Development Kicked Off [Aug2015]
Reviewed and scored prelim FMEA
Identified key experiments to support PPQ ranges
Impact of MOI and Harvest Time: Finalized Response Surface Design

<table>
<thead>
<tr>
<th>Factor</th>
<th>Levels</th>
<th>JMP design including replicates and 6 center points</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOI (1 PFU: viable cell)</td>
<td>MOIs examined over 100-fold range</td>
<td></td>
</tr>
<tr>
<td>Harvest Timing (HPI)</td>
<td>Examined harvesting over multiple days post infection</td>
<td></td>
</tr>
</tbody>
</table>

Experiment 1
- Conditions 1-30

Experiment 2
- Conditions 1-30

Replicate experiment

Same design used in both experiments, replicate to gain confidence around results
Relative Impact of MOI and Relative Harvest Time on Potency

- Proposed operating space highlighted in red box
- Large operation window for Harvest time and MOI
- Data from 3rd & 4th DOE at lower MOI indicates large operating space
Comparison of the Expected Merck Commercial Process with Clinical Process

- Data presented are for Harvested Viral Fluids
- Lab-scale results (blue diamonds) compared to clinical process (red circles)
 - Arrows indicate lots utilized in clinical trials
- Lab-scale and clinical processes comparable for potency and harvest times
 - Development fits well into operating space
Process Comparability: Clinical / Emergency Use / Commercial Scale

- Commercial process is comparable to EMU and clinical process
 - No significant differences in final BDS potencies
- Final yields within clinical experience range

Relative Potency (PFU)

- Blue: CMO Clinical
- RED: Merck Lots

Process steps:
- VH
- CVH
- RVH
- BDS

Graph details:
- PHAC 001 05 1.5
- CMD 01
- CMD 02
- CMD 03
- CMD 04
- CMD 05
- CMD 06
- CMD 08
- CMD 09
- CMD 11
- CMD 12
- Merck-0007
- Merck-0008
- EMU-1
- EMU-2

Y-axis:
- Relative Potency to Clinical Lots
 - Ranges from 0.90 to 1.10

X-axis:
- Process step
 - VH to BDS
Expected Process Parameters (Comparison of Clinical and Commercial Process)

<table>
<thead>
<tr>
<th></th>
<th>Clinical Process (CMO)</th>
<th>Commercial Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harvesting Time</td>
<td></td>
<td>No Expected Changes</td>
</tr>
<tr>
<td>MOI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reaction Temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reaction Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactor</td>
<td>GE Wave Bioreactor</td>
<td>200L SU Jacketed Vessel</td>
</tr>
<tr>
<td>Mixing Process</td>
<td>Rocking</td>
<td>Bottom Mounted Magnetic Stirrer</td>
</tr>
</tbody>
</table>

- **No significant changes across the process expected**
 - Goal is to minimize changes, only modify steps necessary for scale-up
Vaccine Path to PPQ (DP Development)

- Impact of shear and mixing on final formulated bulk (FFB)
- Short-term stability studies to investigate the impact of normal manufacturing times and temperatures on drug product potency
 - 2-8C
 - TOR
- Impact of freezing and thawing
- BDS dilutability studies to target a final DP potency
- Materials of contact experiments and examination of CCI for the final DP image
 - SD and MD vials
 - Examination of different formulation vessels (i.e., SS, Glass, SUT)
- Long-term stability studies for DP stability studies
DP Results: Impact of Vaccine to Shear

- DP not impacted by shear stress
 - DP was exposed to 180 turnovers in an experimental shear cell
Impact of freezing rate of Ebola DP stability

- Evaluated impact of freezing rate on DP
 - Quick freezing in LN2 blast freezer (15 min)
 - Slow freezing in -70°C freezer (2 & 8 hr)
 - 72 hr freeze controlled in Lyophilization cabinet
 - Mimics expected large lot freezing time

- Method of freezing does not appear to impact potency
 - Allows flexibility for manufacturing and freeze process
Impact to Thawing Rate on Ebola DP Potency (10D image)

- Thaw rate impacts DP potency in 10D image
 - Single Dose Vial study showed similar trend

- Thawing protocol important for vaccine field use
 - Thaw at RT to minimize the thaw time
Ebola DP Freeze / Thaw Stability

- Vaccine appears stable through 5 Freeze-thaw cycles
 - Flexibility in manufacturing for packaging and labelling
 - Vials frozen in -70°C freezer and thawed at room temperature
Dilutability of Ebola BDS to DP Target Potency

- BDS can be diluted to specified DP potency
 - Increased confidence in achieving formulation and filling targets
 - Examined both clinical and commercial processes
Initial Development of Lyophilized Formulation for Potential Ebola Next Gen

- All formulations examined achieve acceptable cake appearance with non-optimized cycle
- Initial formulation development focused on lyophilization yields and accelerated stability
- Utilize accelerated stability to identify lead formulations for long-term stability studies
Tech Transfer Site Readiness Roadmap

Initiation, Planning, Capital Project, Quality System Assessment, Analytical TT

Stage Gate 0

Process & Site Readiness

Stage Gate 1

Engineering Lots

Stage Gate 2

Process Simulations

Stage Gate 3

Process Performance Qualification Lots (PPQ)

Stage Gate 4

Filing Preparation, Comparability Report & Pre-launch Audit

Stage Gate 5

File Submission, Routine Manufacturing and Stability

MERCK Vaccine R&D
Program Challenges

• Three parallel activities within Merck to drive program forward and inability to sequence
 • Develop Scale-up process for Commercial Manufacturing
 • Site and Tech Transfer strategy and CapEx project to ready the facility as soon as possible
 • Process not fully assessed and design space not understood, required development in-lab to fit to facility and better understand process
 • Manufacture Emergency Use Material to Support a Potential Future Zaire Ebola Outbreak
 • Ensure doses available prior to licensed product in an emergency / clinical setting
 • Development efforts initiated for next generation vaccine candidate
 • Thermostable lyophilized product

• Different approaches to risk based decision making
 – Team not investigating all areas of process, but rather focused on key areas
 • Expedites process development and increases team’s efficiency in delivering a commercial process

• Rapidly evolving external environment
 • Numerous points to interact with during development for both development and funding
 • WHO, GAVI, BARDA, DTRA, DOD, Wellcome Trust, NewLink/BPS, NIH, NIAID
Applicability of Strategy Applied for Merck’s Ebola Vaccine to Other Programs

- Examination of changes in scale and bulk process for later stage development
 - Changing scale
 - Moving from clinical scale to commercial scale
 - Moving to different platform for production
 - RB process to cell stacks or microcarriers for BDS production
 - Moving from transient transfectants in early stage development to stable clones

- Formulation changes during development
 - Biologics utilizing “platform” formulations in early phase programs and later moving to commercial formulation
 - Moving from frozen liquid formulations to improved refrigerator stable and lyophilized formulations as move into Phase II and beyond

- Building strong analytical comparability to minimize clinical studies
Summary, Conclusions, and Successes

• Merck committed to move the vaccine forward to licensure as quickly as possible and ensure vaccine availability for at-risk populations in advance of product licensure
 • Merck has successfully manufactured clinical trial/EMU supplies
 • ~120K doses available and another ~500K dose equivalents
 • Filed necessary EUAL with WHO

• Strong preclinical data, including evidence of protection after single dose
 • Positioned the vaccine to be an important vaccine candidate in response to recent Ebola outbreak

• Merck has shown ability to scale process from clinical to commercial process
 • Comparability assessment underway between processes

• Initial efforts underway to examine next generation product
 • Thermostable / lyophilized product

• Merck and NewLink working in collaboration with a large number of partners
 • Regulators, Academia, International Health Agencies, NGOs, US Military, and other US and ex-US government agencies have moved the vaccine forward at an unprecedented pace
Partnerships and Alliances

Phase I Studies

WHO Clinical Consortium/Wellcome Trust

- **Switzerland**: University Hospitals of Geneva
- **Germany**: University Medical Center Hamburg/Clinical Trial Center North
- **Gabon**: Centre de Recherches Medicales de Lambarene/University of Tuebingen
- **Kenya**: Kenya Medical Research Institute
- Marburg Laboratory

- CCV – Halifax, Canada
- US Department of Defense (WRAIR, JVAP, USAMRIID, DTRA)
- NIAID/NIH
- BARDA

Phase II/III Studies

- **Liberia**: Liberia – NIH Partnership (NIAID)
- **Sierra Leone**: CDC/Sierra Leone Medical School, BARDA
- **Guinea**: WHO/Norwegian Institute of Public Health/MSF/Health Canada
- US Department of Defense (WRAIR, JVAP, USAMRIID, DTRA)
Acknowledgements

- Ed Bell
- Luca Benetti
- Joe Califano
- Beth-Ann Coller
- Larry Dick
- Joan Fusco (New Link Genetics)
- Marshall Gayton
- Swati Gupta
- Kim Hassis
- Kay Hunsberger
- Lynne Isopi
- Risat Jannat

- Maggie Keane
- Tom Monath (NewLink Genetics)
- Richard Peluso
- Erica Strable
- Francis Torres
- Julie Waterbury
- Merck-NewLink Joint Steering Committee
- V920 IDST and PDT
- Merck Senior Leaders across the company
- Multiple external partners and collaborators
- Multiple external funding organizations

Elements of this program has been funded in whole or in part with Federal Funds from the Department of Health and Human Services; Office of the Assistant Secretary for Preparedness and Response; Biomedical Advanced Research and Development Authority under Contract Number: HHSO100201500002C
Thank You!!

V920 Merck’s selection of the NewLink rVSVΔG-ZEBOV-GP LVV live attenuated candidate was validated with extremely positive efficacy results.

QUESTIONS?

Merck was honored with 3 Awards at the recent World Vaccine Congress:
- Best Licensing deal with Newlink for v920
- Best Prophylactic vaccine with Newlink for v920
- Best Pharmaceutical Company

The V920 internal Merck team is highly functioning, motivated and dedicated. They have accomplished an extraordinary amount of work with external partners in a relatively short time frame. “Best team I’ve ever worked with in my career”