A new inductively heated mini reactor for biomass pyrolysis and gasification tests

Cedric Briens
ICFAR

Mohammad Latifi
ICFAR

Franco Berruti
ICFAR

Follow this and additional works at: http://dc.engconfintl.org/bioenergy_iv

Part of the Chemical Engineering Commons

Recommended Citation
http://dc.engconfintl.org/bioenergy_iv/25

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in BioEnergy IV: Innovations in Biomass Conversion for Heat, Power, Fuels and Chemicals by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
A New Inductively Heated Mini Reactor for Biomass Pyrolysis and Gasification Tests

Mohammad Latifi, Franco Berruti, Cedric Briens

London, Ontario CANADA
Many important catalytic reactions are endothermic e.g.:
 • Catalytic cracking
 • Gasification

Issues with traditional test reactors:
 • Heat is transferred from the wall into reactor
 • Low heat transfer coefficient:
 → High temperature gradient
 → Parasitic thermal cracking reactions
 • Seals for agitator may leak
Solutions

- Batch reactor
 → good control of residence time
Solutions

- Batch reactor
 → good control of residence time

- Low temperature difference between heating surface and catalyst bed:
 → induction heating of rods within bed
Solutions

• Batch reactor
 → good control of residence time

• Low temperature difference between heating surface and catalyst bed:
 → induction heating

• No mechanical seal
 → jiggle bed
 (up and down motion)
• Batch reactor
 → good control of residence time

• Low temperature difference between heating surface and catalyst bed:
 → induction heating

• No mechanical seal
 → jiggle bed
 (up and down motion)
Optimum frequency and amplitude

- Analysis of color variations
Heat transfer performance

Heat transfer coefficient from metal rods to catalyst bed

For various conditions:

\[h_w \left(\frac{w}{m^2 \cdot ^\circ C} \right) \]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td></td>
</tr>
<tr>
<td>493</td>
<td></td>
</tr>
</tbody>
</table>

→ similar to what can be obtained in a fluidized bed
Comparing with studies with pilot plant fluidized catalytic reactors

- Catalytic cracking of acetic acid

<table>
<thead>
<tr>
<th>Molar steam to carbon ratio = 6</th>
<th>Molar steam to carbon ratio = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalysts tested by Medrano et al. (2009)</td>
<td>Catalysts tested by Vagia and Lemonidou (2010)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Catalyst</td>
<td>Ni/Al, Ca0.5</td>
</tr>
<tr>
<td>H2</td>
<td>0.84</td>
</tr>
<tr>
<td>CO</td>
<td>0.18</td>
</tr>
<tr>
<td>CO2</td>
<td>0.71</td>
</tr>
<tr>
<td>CH4</td>
<td>0.00</td>
</tr>
<tr>
<td>C2H4+C2H6</td>
<td>0.00</td>
</tr>
<tr>
<td>Conversion</td>
<td>0.90</td>
</tr>
</tbody>
</table>

→ excellent agreement between JBR results and pilot plant fluidized beds
Gasification of bio-oil

- **Bed:**
 - 10 g of sand (106-220 µm)
 - commercial catalyst (two catalysts were tested)

- **Liquid feedstock:**
 - 4 µl injected
 - Two types of bio-oils from wood pyrolysis:
 - Oak bio-oil produced by Dynamotive (DMB)
 - Birch wood bio-oil produced at 475 °C at ICFAR (BWB)
Gasification of bio-oil

30 s residence time

No catalyst

Catalyst

0.5 g

1 g
Gasification of bio-oil

30 s residence time

No catalyst

Catalyst

1 g

0.5 g

molar H₂/CO

Temperature, °C

Temperature, °C
Gasification of bio-oil

800 °C, 30 s residence time

Birch wood bio-oil

Carbon conversion

Catalyst mass, g

Catalyst X
Catalyst Y
Conclusions

- The jiggle bed reactor:
 - effective batch micro reactor for catalyst testing
 - convenient
 - ideal for endothermic reactions

- Simulates typical fluidized bed reactors