Investigation of electrochemically-induced repassivation of Al 7075-T6 and Al 2024-T3 as a function of applied stress and galvanic corrosion

Monica Trueba
Università degli Studi di Milano, monica.trueba@unimi.it

Stefano P. Trasatti
Università degli Studi di Milano

Daniele Guastaferro
Università degli Studi di Milano

Michele Ferri
Università degli Studi di Milano

Marina Cabrini
Università degli Studi di Bergamo

Follow this and additional works at: http://dc.engconfintl.org/edsm

Recommended Citation

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in International Workshop on the Environmental Damage in Structural Materials Under Static Load/Cyclic Loads at Ambient Temperatures by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Investigation of Electrochemically - Induced Repassivation of Al 7075-T6 and Al 2024-T3 as a Function of Applied Load and Galvanic Corrosion

M. FERRIa, D. GUASTAFERROa, M. TRUEBAa, S.P. TRASATTIa, M. CABRINIb

aUniversità degli Studi di Milano, Dipartimento di Chimica, Milan, Italy
bUniversità degli Studi di Bergamo, Dipartimento di Ingegneria e Scienze Applicate, Dalmine (Bergamo), Italy
Talking points

- Electrochemically-induced repassivation
 - Halide film vs Oxide film
 - Active phase at grain boundaries: β phase (Al_3Mg_2) in Al-Mg alloys

- Repassivation and bending load: Al 7075-T6 and Al 2024-T3
 - Experimental variables: environment, electrochemical, mechanical

- Galvanic corrosion and bending load
 - Dissimilar metal CRES 304

- Final remarks
Electrochemically induced repassivation

SCHEMATICS OF PIT INTIATION AND REPASSIVATION

Metal halide nucleation and growth

Very thin oxide film extends over the active surface on the pit bottom and then increases its thickness, resulting in complete repassivation.
Electrochemically induced repassivation

<table>
<thead>
<tr>
<th>Halide film</th>
<th>Oxide film at pit bottom</th>
</tr>
</thead>
</table>

E_{ptp} - thermodynamic driving force of Al dissolution on freshly created (filmed) surface

iptp \(\propto \) rate hydrolysis equilibrium at \([Al^{3+}]_{\text{crit}}\)

\[
2Al^{3+} + H_2O + OH^- \leftrightarrow 2Al(OH)^{2+} + H^+
\]

steepness \(\propto \) \(H^+\) removal for full hydrolysis at \(E_{prot}\) (delayed repassivation constant ?!)
Active phase at grain boundaries: β phase precipitation

Al 5083-H111 as a function of sensitization time at 150 °C

✓ Commercial Al-Mg alloy, strain hardened by 20% of cold work, 10 years Lab. conditions

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>Fe</th>
<th>Cu</th>
<th>Mn</th>
<th>Mg</th>
<th>Zn</th>
<th>Ti</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al 5083-H111</td>
<td>0.17</td>
<td>0.32</td>
<td>0.04</td>
<td>0.62</td>
<td>4.32</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
</tr>
</tbody>
</table>

20 mm x 30 mm rectangular sheets, thickness 1.5 mm
Surfaces wet ground up to 1200 grit

- Microstructure/composition (XRD, metallography*, SEM)
- Electrochemical properties (pitting scan, scan rate 0.1667 mV/s, 0.6 M NaCl, pH 6.5, room T)
- Mass loss test (NAMLT, 24-hours immersion HNO₃, ASTM G67)
- Mechanical properties (micro-hardness measurements 0.1 kgf/10 sec, diamond indenter, ISO 14577/DIN 50359)

*Metallography
1) 0.05 μm colloidal Al₂O₃
2) chemical etching
(NH₄)₂S₂O₈ 1g/10 mL, 30 min, room T
Active phase at grain boundaries: β phase precipitation

Al 5083-H111 as a function of sensitization time at 150 °C
Active phase at grain boundaries: β phase precipitation at grain boundaries

Al 5083-H111 as a function of sensitization time at 150 °C

Pitting Scan (PS)

0.6 M NaCl (pH 6.5)

$i_{\text{rev}} = 2.5 \text{ mA/cm}^2$

scan rate (ν) 0.1667 mV/s

(10 mV/min)
Active phase at grain boundaries: β phase precipitation at grain boundaries

Al 5083-H111 repassivation as a function of sensitization time at 150 $^\circ$C

![Average PS curves](image)
Active phase at grain boundaries: β phase precipitation at grain boundaries

Al 5083-H111 repassivation as a function of sensitization time at 150 °C
Active phase at grain boundaries: β phase precipitation at grain boundaries

Al 5083-H111 as a function of sensitization time at 150 °C
1) Combining in-situ generated by corrosion fresh surfaces and externally applied load?

2) Stress assisted galvanic corrosion?

 Complex design requirements
Repassivation and bending load: Al 7075-T6 and Al 2024-T3

Experimental variables

☑ Environment - Test solution composition ([Cl⁻], pH, viscosity), pre-exposure time, temperature
☑ (Electro)chemical - electrochemical parameters (i_{rev}, E_{rev}, n), galvanic coupling (joint with CRES 304)
☑ Mechanical - Static bending load (side in tension and compression), also followed by unload (residual tensile and compressive stress)
Materials, loaded specimens and electrochemical setup

Al 7075-T6 & Al 2024-T3 (Aviometal Spa, Italy)

Chemical composition (wt.%)

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>Fe</th>
<th>Cu</th>
<th>Mn</th>
<th>Mg</th>
<th>Zn</th>
<th>Ti</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al 7075-T6</td>
<td>0.06</td>
<td>0.13</td>
<td>1.70</td>
<td>0.02</td>
<td>2.60</td>
<td>5.80</td>
<td>0.04</td>
<td>0.20</td>
</tr>
<tr>
<td>Al 2024-T3</td>
<td>0.07</td>
<td>0.12</td>
<td>4.40</td>
<td>0.46</td>
<td>1.50</td>
<td>0.08</td>
<td>0.08</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Mechanical properties (Stress - Strain curves)

<table>
<thead>
<tr>
<th></th>
<th>Al 7075-T6</th>
<th>Al 2024-T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness (mm)</td>
<td>2.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Elastic Modulus E (GPa)</td>
<td>74.5</td>
<td>75.7</td>
</tr>
<tr>
<td>Yield strength YS, Rp02 (MPa)</td>
<td>510</td>
<td>354</td>
</tr>
<tr>
<td>Ultimate tensile strength UTS (MPa)</td>
<td>583</td>
<td>499</td>
</tr>
</tbody>
</table>
Materials, loaded specimens and electrochemical setup

Flat four-point bent-beam (4PPB) specimens (ASTM G39-99)

\[
\sigma = \frac{12Et y}{(3H^2 - 4A^2)}
\]

\[
y = \frac{\sigma(3H^2 - 4A^2)}{12Et}
\]

- \(t \) – thickness of specimen
- \(y \) – maximum deflection (between outer supports)
- \(Y' \) – deflection between inner supports
- \(h \) – distance between inner supports
- \(H \) – distance between outer supports
- \(A \) – distance between inner and outer supports

Constant load mostly below the elastic limit
Materials, loaded specimens and electrochemical setup

Flat four-point bent-beam (4PPB) specimens (ASTM G39-99)

side in tension

side in compression

Laminae dimension: 165 x 25 x 2 mm (Al 7075)
165 x 25 x1.5 mm (Al 2024)

Laminae dimension: 248 x 38 x 2 mm (Al 7075)
248 x 38 x1.5 mm (Al 2024)
Materials, loaded specimens and electrochemical setup

Flat four-point bent-beam (4PPB) specimens (ASTM G39-99)

LOAD LEVELS

![Strain gauges](image)

Graphs:
- **Stress vs. Strain** for Al 7075-T6 and Al 2024-T3.
 - Al 7075-T6:
 - Stress (MPa) vs. Strain (mm/mm)
 - Strain gauge (mm/mm) vs. Average strain (mm/mm)
 - Al 2024-T3:
 - Similar graphs as above.
Materials, loaded specimens and electrochemical setup

Electrochemical setup

Double walled Pyrex O-ring cell (bi-adhesive tape)
WE – Al alloy
CE – Pt
RE – SCE (Luggin)

1 cm² exposed Al surface
3 μm finish

Luggin Probe
Materials, loaded specimens and electrochemical setup

Electrochemical setup

Computer-driven Gamry Multipotentiostat

Parallel experimental runs in random order
At least 2 replications for each exp. condition
Repassivation and applied load Al 7075-T6 Static bending load - side in tension

Pre-exposure time t_{exp}

0.6 M NaCl pH 6.5, room T, i_{rev} 2.5 mA/cm2
Repassivation and applied load

Al 7075-T6 Static bending load - side in tension

Test solution viscosity

0.6 M NaCl pH 6.5/3.5, room T, i_{rev} 2.5 mA/cm²

<table>
<thead>
<tr>
<th>% Glycerol</th>
<th>η (cP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.06</td>
</tr>
<tr>
<td>10</td>
<td>1.43</td>
</tr>
<tr>
<td>20</td>
<td>2.65</td>
</tr>
<tr>
<td>30</td>
<td>5.87</td>
</tr>
<tr>
<td>40</td>
<td>9.25</td>
</tr>
<tr>
<td>50</td>
<td>20.0</td>
</tr>
<tr>
<td>60</td>
<td>21.5</td>
</tr>
</tbody>
</table>

Viscosity cup (2 mm)
ASTM D1200 Ford

pH 6.5 open symbols
pH 3.5 filled symbols
Repassivation and applied load

Al 7075-T6 Static bending load - side in tension

[Cl−] and pH

NaCl pH 6.5

\[
\log i_{\text{pdc}} (i \text{ in A/cm}^2) = \log [\text{Cl}] ([\text{Cl}] \text{ in M})
\]

90% YS
-0.5
\((R^2 = 0.961) \)

% YS
- 0
- 25
- 50
- 70
- 80
- 90 (430 MPa)
- 98
- 100 (510 MPa)

NaCl pH 3.5

\[
\log i_{\text{pdc}} (i \text{ in A/cm}^2) = \log [\text{Cl}] ([\text{Cl}] \text{ in M})
\]

90% YS
-0.55
\((R^2 = 0.997) \)

% YS
- 0
- 25
- 50
- 70
- 90 (430 MPa)
- 98
- 100 (510 MPa)
Repassivation and applied load: Al 7075-T6 Static bending load - side in tension

[Cl-] and pH

Microyielding?
Bending thin specimen
Repassivation and applied load Al 7075-T6 Static bending load - side in tension [Cl⁻] and pH

room T, i_{rev} 2.5 mA/cm²

Graph showing the effect of Cl⁻ concentration and pH on the repassivation and applied load. The graph includes three lines for different pH levels (6.5 and 3.5) and three concentrations of Cl⁻ (0.6 M, 0.3 M, and 0.1 M) with error bars indicating variability.
Repassivation and applied load

Al 7075-T6 Static bending load - side in tension

[Cl⁻] and pH

90% YS

100% YS
Repassivation and applied load

\[\text{Al 7075-T6 Static bending load - side in tension} \]

\[\text{room T, } i_{\text{rev}} 2.5 \text{ mA/cm}^2 \]

\([\text{Cl}^-]\) and pH

90% YS

Hair line crack

90% YS

\(0.6 \text{ M}, 0.3 \text{ M}, 0.1 \text{ M}\)

\(\text{pH 6.5}, \text{pH 3.5}\)

\(i_{\text{corr}} (\text{in mA/cm}^2)\)

\(\epsilon (\text{mm/mm})\)
Repassivation and applied load Al 7075-T6 and Al 2024-T3

Amount of promoted corrosion i_{rev} (red) 1 (blue) 2.5 (green) 5 mA/cm2

Static bending - side in tension

0.6 M NaCl pH 6.5/3.5, room T

Al 7075-T6 0.6 M NaCl pH 6.5

characteristic potentials

E vs SCE (mV)

iptp

steepness

90% YS

Average Epit

E_{ptp} E_{prot}
Repassivation and applied load Al 7075-T6 and Al 2024-T3

Amount of promoted corrosion i_{rev} () 1 () 2.5 () 5 mA/cm2

Al 7075-T6 0.6 M NaCl pH 3.5

Static bending - side in tension 0.6 M NaCl pH 6.5/3.5, room T

+ Average Epit x Average Eptp

Red Blue Green Eprot
Repassivation and applied load Al 7075-T6 and Al 2024-T3

Amount of promoted corrosion i_{rev} (■) 1 (▲) 2.5 (▲) 5 mA/cm2

Al 2024-T3 0.6 M NaCl pH 6.5

characteristic potentials

i_{ptp} (mA/cm2)

steepness
Repassivation and applied load Al 7075-T6 and Al 2024-T3

Amount of promoted corrosion i_{rev} () 1 () 2.5 () 5 mA/cm2

Al 2024-T3
pH 6.5

Static bending - side in tension
0.6 M NaCl pH 6.5/3.5, room T
Repassivation and constant applied load: Al 7075-T6 & Al 2024-T3

Bending load: sides in tension and compression
sides in tension and compression followed by unload

TAGUCHI ORTHOGONAL DESIGN L9

<table>
<thead>
<tr>
<th>EXP</th>
<th>% YS</th>
<th>Scan rate (mV/s)</th>
<th>Erev vs SCE (mV)</th>
<th>T (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>0.1667</td>
<td>-550</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>5</td>
<td>-450</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>10</td>
<td>-350</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>0.1667</td>
<td>-450</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>80</td>
<td>5</td>
<td>-350</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>80</td>
<td>10</td>
<td>-550</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>0.1667</td>
<td>-350</td>
<td>60</td>
</tr>
<tr>
<td>8</td>
<td>100</td>
<td>5</td>
<td>-550</td>
<td>80</td>
</tr>
<tr>
<td>9</td>
<td>100</td>
<td>10</td>
<td>-450</td>
<td>40</td>
</tr>
</tbody>
</table>

Example: Al 7075-T6 (tension side, load)
Average reverse curves

Test solution: 0.6 M NaCl pH 6.5
Potentiostatic polarization at Erev (10 min) followed by potential scan into the active region
PARTIAL LEAST SQUARES ANALYSIS

Al 7075-T6

Al 2024-T3

Y responses: Eptp, iptp, steepness, Eprot
Galvanic corrosion and load of Al 7075-T6 and Al 2024-T3

Preliminary experiments (0.6 M NaCl, pH 6.5, room T)

RATIO BETWEEN ANODE AND CATHODE AREAS (A_a/A_c) ≈ 10:1
Galvanic corrosion and load Al 7075-T6 and Al 2024-T3

Static bending - side in tension dissimilar metal: passing through CRES 304 screw

0.6 M NaCl pH 6.5, room T

Macrocouples

- Al – Pt
- Al/Fe – Pt

dissolved O₂ reduction comparable contribution

(Auxiliary) Cathode Pt

WE – Al alloy (WE1) or Al alloy/CRES 304 (WE2)

RE – SCE

two laminae connected with CRES 304 screw

tightening torque 3 Nm

Aa/Ac ≈ 2 : 1

Schematics of Al alloy/CRES 304
Galvanic corrosion and load Al 7075-T6 and Al 2024-T3

Static bending - side in tension dissimilar metal passing through CRES 304 screw

WE1: Al 7075

WE2: Al 7075 / CRES 304
Galvanic corrosion and load
Al 7075-T6 and Al 2024-T3

Static bending - side in tension
dissimilar metal passing through CRES 304 screw
Galvanic corrosion and load Al 7075-T6 and Al 2024-T3

Static bending - side in tension dissimilar metal passing through CRES 304 screw

WE2: Al 7075 / CRES 304

Higher maximum stress because bending stresses increased by the notch and thread effect
Stress-oriented dissolution enhanced with %YS

mounting resin 0 %YS 100 %YS

100µm 100µm
Galvanic corrosion and load Al 7075-T6 and Al 2024-T3

Static bending - side in tension dissimilar metal passing through CRES 304 screw

WE2: Al 7075 / CRES 304

Higher maximum stress because bending stresses increased by the notch and thread effect
Stress-oriented dissolution enhanced with %YS

contact between two laminae

100 %YS

mounting resin

300µm 100µm
Galvanic corrosion and load Al 7075-T6 and Al 2024-T3

Static bending - side in tension

WE2: Al 2024 / CRES 304

dissimilar metal passing through CRES 304 screw
The stress concentration is higher on the top surface of both laminae due to the presence of the hole.
Final remarks

- Electrochemically-induced repassivation in combination with bending load has indicated a critical condition for Al 7075-T6, suggesting inter-relation between local environment, electrochemical and mechanical states.

- Stress-oriented IG dissolution of Al 7075-T6 in contact with CRES 304 is enhanced with YS.

- Microstructural corrosion of Al 2024-T3, presenting less negative pitting potential than Al 7075-T6, could be responsible of the less evident effect of bending load on the repassivation and galvanic behaviors.

- Experiments under dynamic conditions (SSRT) and/or the use of lamina with stress concentration could help to understand better present findings.
Lamina with stress concentration (artificial notch)

Static bending - side in tension

FEM ANALYSIS

- Stresses field in x direction (s11)
- von Mises stresses

Depth of the notch = 0.4 mm
Diameter of the notch at the top surface = 0.2 mm

The notch allows to extend the high level of stress from the top surface of the sheet along the lamina thickness
Thank you for the attention